BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23039623)

  • 21. Comparison of laser speckle contrast imaging and laser-Doppler fluxmetry in boys and men.
    Hodges GJ; Klentrou P; Cheung SS; Falk B
    Microvasc Res; 2020 Mar; 128():103927. PubMed ID: 31593712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry.
    Fredriksson I; Hultman M; Strömberg T; Larsson M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30675771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2023 Mar; 28(3):036007. PubMed ID: 36950019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations.
    Iredahl F; Löfberg A; Sjöberg F; Farnebo S; Tesselaar E
    PLoS One; 2015; 10(8):e0133760. PubMed ID: 26270037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion.
    Lv W; Wang Y; Chen X; Fu X; Lu J; Li P
    J Biophotonics; 2019 Jan; 12(1):e201800100. PubMed ID: 29952071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relevance of laser Doppler and laser speckle techniques for assessing vascular function: state of the art and future trends.
    Humeau-Heurtier A; Guerreschi E; Abraham P; Mahé G
    IEEE Trans Biomed Eng; 2013 Mar; 60(3):659-66. PubMed ID: 23372072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale entropy of laser Doppler flowmetry signals in healthy human subjects.
    Humeau A; Buard B; Mahé G; Rousseau D; Chapeau-Blondeau F; Abraham P
    Med Phys; 2010 Dec; 37(12):6142-6. PubMed ID: 21302770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anisotropic processing of laser speckle images improves spatiotemporal resolution.
    Rege A; Senarathna J; Li N; Thakor NV
    IEEE Trans Biomed Eng; 2012 May; 59(5):1272-80. PubMed ID: 22249596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser speckle contrast imaging for assessment of liver microcirculation.
    Sturesson C; Milstein DM; Post IC; Maas AM; van Gulik TM
    Microvasc Res; 2013 May; 87():34-40. PubMed ID: 23403398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimisation of movement detection and artifact removal during laser speckle contrast imaging.
    Omarjee L; Signolet I; Humeau-Heutier A; Martin L; Henrion D; Abraham P
    Microvasc Res; 2015 Jan; 97():75-80. PubMed ID: 25261716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Choosing a laser for laser speckle contrast imaging.
    Postnov DD; Cheng X; Erdener SE; Boas DA
    Sci Rep; 2019 Feb; 9(1):2542. PubMed ID: 30796288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    J Biomed Opt; 2015 Dec; 20(12):121302. PubMed ID: 26220209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bi-dimensional variational mode decomposition of laser speckle contrast imaging data: A clinical approach to critical limb ischemia?
    Humeau-Heurtier A; Abraham P; Henni S
    Comput Biol Med; 2017 Jul; 86():107-112. PubMed ID: 28527350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring microvascular perfusion variations with laser speckle contrast imaging using a view-based temporal template method.
    Ansari MZ; Kang EJ; Manole MD; Dreier JP; Humeau-Heurtier A
    Microvasc Res; 2017 May; 111():49-59. PubMed ID: 28065672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-spectral laser speckle contrast images using a wavelength-swept laser.
    Kim JW; Jang H; Kim GH; Jun SW; Kim CS
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31290292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of optical flow algorithms to laser speckle imaging.
    Aminfar A; Davoodzadeh N; Aguilar G; Princevac M
    Microvasc Res; 2019 Mar; 122():52-59. PubMed ID: 30414869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging.
    Basak K; Dey G; Mahadevappa M; Mandal M; Sheet D; Dutta PK
    Microvasc Res; 2016 Sep; 107():6-16. PubMed ID: 27131831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast.
    Vaz PG; Humeau-Heurtier A; Figueiras E; Correia C; Cardoso J
    Phys Med Biol; 2017 Dec; 63(1):015024. PubMed ID: 29205168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.