BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 23039853)

  • 1. Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges.
    Grånäs E; Knudsen J; Schröder UA; Gerber T; Busse C; Arman MA; Schulte K; Andersen JN; Michely T
    ACS Nano; 2012 Nov; 6(11):9951-63. PubMed ID: 23039853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.
    Papagno M; Rusponi S; Sheverdyaeva PM; Vlaic S; Etzkorn M; Pacilé D; Moras P; Carbone C; Brune H
    ACS Nano; 2012 Jan; 6(1):199-204. PubMed ID: 22136502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth from below: graphene bilayers on Ir(111).
    Nie S; Walter AL; Bartelt NC; Starodub E; Bostwick A; Rotenberg E; McCarty KF
    ACS Nano; 2011 Mar; 5(3):2298-306. PubMed ID: 21322532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making graphene luminescent by oxygen plasma treatment.
    Gokus T; Nair RR; Bonetti A; Böhmler M; Lombardo A; Novoselov KS; Geim AK; Ferrari AC; Hartschuh A
    ACS Nano; 2009 Dec; 3(12):3963-8. PubMed ID: 19925014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111).
    Sicot M; Leicht P; Zusan A; Bouvron S; Zander O; Weser M; Dedkov YS; Horn K; Fonin M
    ACS Nano; 2012 Jan; 6(1):151-8. PubMed ID: 22214768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen switching of the epitaxial graphene-metal interaction.
    Larciprete R; Ulstrup S; Lacovig P; Dalmiglio M; Bianchi M; Mazzola F; Hornekær L; Orlando F; Baraldi A; Hofmann P; Lizzit S
    ACS Nano; 2012 Nov; 6(11):9551-8. PubMed ID: 23051045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural coherency of graphene on Ir(111).
    Coraux J; N'Diaye AT; Busse C; Michely T
    Nano Lett; 2008 Feb; 8(2):565-70. PubMed ID: 18189442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles studies on oxygen-induced faceting of Ir(210).
    Kaghazchi P; Jacob T; Ermanoski I; Chen W; Madey TE
    ACS Nano; 2008 Jun; 2(6):1280-8. PubMed ID: 19206346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of dispersible ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in a magnetic field.
    Genorio B; Peng Z; Lu W; Price Hoelscher BK; Novosel B; Tour JM
    ACS Nano; 2012 Nov; 6(11):10396-404. PubMed ID: 23116171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of graphene via 1,3-dipolar cycloaddition.
    Quintana M; Spyrou K; Grzelczak M; Browne WR; Rudolf P; Prato M
    ACS Nano; 2010 Jun; 4(6):3527-33. PubMed ID: 20503982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene.
    Schäffel F; Wilson M; Bachmatiuk A; Rümmeli MH; Queitsch U; Rellinghaus B; Briggs GA; Warner JH
    ACS Nano; 2011 Mar; 5(3):1975-83. PubMed ID: 21344881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001).
    Gao T; Gao Y; Chang C; Chen Y; Liu M; Xie S; He K; Ma X; Zhang Y; Liu Z
    ACS Nano; 2012 Aug; 6(8):6562-8. PubMed ID: 22861188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain boundary mapping in polycrystalline graphene.
    Kim K; Lee Z; Regan W; Kisielowski C; Crommie MF; Zettl A
    ACS Nano; 2011 Mar; 5(3):2142-6. PubMed ID: 21280616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two distinct phases of bilayer graphene films on Ru(0001).
    Papagno M; Pacilé D; Topwal D; Moras P; Sheverdyaeva PM; Natterer FD; Lehnert A; Rusponi S; Dubout Q; Calleja F; Frantzeskakis E; Pons S; Fujii J; Vobornik I; Grioni M; Carbone C; Brune H
    ACS Nano; 2012 Oct; 6(10):9299-304. PubMed ID: 23020302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-yield preparation of high-electronic-quality graphene by a Langmuir-Schaefer approach.
    Gengler RY; Veligura A; Enotiadis A; Diamanti EK; Gournis D; Józsa C; van Wees BJ; Rudolf P
    Small; 2010 Jan; 6(1):35-9. PubMed ID: 19937610
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrochemistry of folded graphene edges.
    Ambrosi A; Bonanni A; Pumera M
    Nanoscale; 2011 May; 3(5):2256-60. PubMed ID: 21483940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods.
    He FA; Fan JT; Song F; Zhang LM; Lai-Wa Chan H
    Nanoscale; 2011 Mar; 3(3):1182-8. PubMed ID: 21258693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.
    Jin Z; Yao J; Kittrell C; Tour JM
    ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.