These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23040313)

  • 1. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of Selenium during Selenate Reduction by Granular Zerovalent Iron.
    Shrimpton HK; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2015 Oct; 49(19):11688-96. PubMed ID: 26302231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining mechanisms of groundwater Hg(II) treatment by reactive materials: an EXAFS study.
    Gibson BD; Ptacek CJ; Lindsay MB; Blowes DW
    Environ Sci Technol; 2011 Dec; 45(24):10415-21. PubMed ID: 22066524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation exchange during subsurface iron removal.
    van Halem D; Moed DH; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2012 Feb; 46(2):307-15. PubMed ID: 22137449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust.
    Hayashi H; Kanie K; Shinoda K; Muramatsu A; Suzuki S; Sasaki H
    Chemosphere; 2009 Jul; 76(5):638-43. PubMed ID: 19447467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process.
    Kang M; Ma B; Bardelli F; Chen F; Liu C; Zheng Z; Wu S; Charlet L
    J Hazard Mater; 2013 Mar; 248-249():20-8. PubMed ID: 23352903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization.
    Kumar S; Loganathan VA; Gupta RB; Barnett MO
    J Environ Manage; 2011 Oct; 92(10):2504-12. PubMed ID: 21665352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW
    Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.
    Mak MS; Lo IM
    Environ Sci Technol; 2011 Dec; 45(23):10148-54. PubMed ID: 22035382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.