BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23040313)

  • 1. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study.
    Gibson BD; Blowes DW; Lindsay MB; Ptacek CJ
    J Hazard Mater; 2012 Nov; 241-242():92-100. PubMed ID: 23040313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of Selenium during Selenate Reduction by Granular Zerovalent Iron.
    Shrimpton HK; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2015 Oct; 49(19):11688-96. PubMed ID: 26302231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining mechanisms of groundwater Hg(II) treatment by reactive materials: an EXAFS study.
    Gibson BD; Ptacek CJ; Lindsay MB; Blowes DW
    Environ Sci Technol; 2011 Dec; 45(24):10415-21. PubMed ID: 22066524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation exchange during subsurface iron removal.
    van Halem D; Moed DH; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2012 Feb; 46(2):307-15. PubMed ID: 22137449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust.
    Hayashi H; Kanie K; Shinoda K; Muramatsu A; Suzuki S; Sasaki H
    Chemosphere; 2009 Jul; 76(5):638-43. PubMed ID: 19447467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process.
    Kang M; Ma B; Bardelli F; Chen F; Liu C; Zheng Z; Wu S; Charlet L
    J Hazard Mater; 2013 Mar; 248-249():20-8. PubMed ID: 23352903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization.
    Kumar S; Loganathan VA; Gupta RB; Barnett MO
    J Environ Manage; 2011 Oct; 92(10):2504-12. PubMed ID: 21665352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of granular ferric hydroxide amendment on the reduction of nitrate in groundwater by zero-valent iron.
    Song H; Jeon BH; Chon CM; Kim Y; Nam IH; Schwartz FW; Cho DW
    Chemosphere; 2013 Nov; 93(11):2767-73. PubMed ID: 24125714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents.
    Mak MS; Lo IM
    Environ Sci Technol; 2011 Dec; 45(23):10148-54. PubMed ID: 22035382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.