These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

918 related articles for article (PubMed ID: 23040810)

  • 1. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior.
    Picciotto MR; Higley MJ; Mineur YS
    Neuron; 2012 Oct; 76(1):116-29. PubMed ID: 23040810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.
    Howe WM; Gritton HJ; Lusk NA; Roberts EA; Hetrick VL; Berke JD; Sarter M
    J Neurosci; 2017 Mar; 37(12):3215-3230. PubMed ID: 28213446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain.
    Obermayer J; Verhoog MB; Luchicchi A; Mansvelder HD
    Front Neural Circuits; 2017; 11():100. PubMed ID: 29276477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex.
    Joshi A; Kalappa BI; Anderson CT; Tzounopoulos T
    J Neurosci; 2016 Aug; 36(32):8487-99. PubMed ID: 27511019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity.
    Sher E; Chen Y; Sharples TJ; Broad LM; Benedetti G; Zwart R; McPhie GI; Pearson KH; Baldwinson T; De Filippi G
    Curr Top Med Chem; 2004; 4(3):283-97. PubMed ID: 14754448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mGluR1 and mGluR5 Synergistically Control Cholinergic Synaptic Transmission in the Thalamic Reticular Nucleus.
    Sun YG; Rupprecht V; Zhou L; Dasgupta R; Seibt F; Beierlein M
    J Neurosci; 2016 Jul; 36(30):7886-96. PubMed ID: 27466334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons.
    Sun YG; Pita-Almenar JD; Wu CS; Renger JJ; Uebele VN; Lu HC; Beierlein M
    J Neurosci; 2013 Jan; 33(5):2048-59. PubMed ID: 23365242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system.
    Schäfer MK; Eiden LE; Weihe E
    Neuroscience; 1998 May; 84(2):331-59. PubMed ID: 9539209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor.
    Yang B; Slonimsky JD; Birren SJ
    Nat Neurosci; 2002 Jun; 5(6):539-45. PubMed ID: 11992117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices.
    Araque A; Martín ED; Perea G; Arellano JI; Buño W
    J Neurosci; 2002 Apr; 22(7):2443-50. PubMed ID: 11923408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic receptor-independent modulation of intrinsic resonance in the rat subiculum neurons through inhibition of hyperpolarization-activated cyclic nucleotide-gated channels.
    Vasnik S; Sikdar SK
    Acta Physiol (Oxf); 2021 Apr; 231(4):e13603. PubMed ID: 33332740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses.
    Pugh PC; Jayakar SS; Margiotta JF
    Mol Cell Neurosci; 2010 Feb; 43(2):244-57. PubMed ID: 19958833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory.
    Giovannini MG; Lana D; Pepeu G
    Neurobiol Learn Mem; 2015 Mar; 119():18-33. PubMed ID: 25595880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-HT receptor regulation of neurotransmitter release.
    Fink KB; Göthert M
    Pharmacol Rev; 2007 Dec; 59(4):360-417. PubMed ID: 18160701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4.
    Dasgupta R; Seibt F; Beierlein M
    J Neurosci; 2018 Jun; 38(23):5338-5350. PubMed ID: 29739869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of cellular electrophysiological actions of vasopressin.
    Raggenbass M
    Eur J Pharmacol; 2008 Apr; 583(2-3):243-54. PubMed ID: 18280467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylcholine becomes the major excitatory neurotransmitter in the hypothalamus in vitro in the absence of glutamate excitation.
    Belousov AB; O'Hara BF; Denisova JV
    J Neurosci; 2001 Mar; 21(6):2015-27. PubMed ID: 11245685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of extracellular adenosine in chemical neurotransmission in the hippocampus and Basal Ganglia: pharmacological and clinical aspects.
    Sperlágh B; Vizi ES
    Curr Top Med Chem; 2011; 11(8):1034-46. PubMed ID: 21401497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental differences in the non-neuronal cholinergic system in rat caecum.
    Bader S; Diener M
    Pflugers Arch; 2018 Apr; 470(4):669-679. PubMed ID: 29299689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release.
    Marcos B; Gil-Bea FJ; Hirst WD; García-Alloza M; Ramírez MJ
    Eur J Neurosci; 2006 Sep; 24(5):1299-306. PubMed ID: 16987217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.