BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23041024)

  • 1. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.
    Cappelletti G; Ardizzone S; Meroni D; Soliveri G; Ceotto M; Biaggi C; Benaglia M; Raimondi L
    J Colloid Interface Sci; 2013 Jan; 389(1):284-91. PubMed ID: 23041024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
    Schlisske S; Held M; Rödlmeier T; Menghi S; Fuchs K; Ruscello M; Morfa AJ; Lemmer U; Hernandez-Sosa G
    Langmuir; 2018 May; 34(21):5964-5970. PubMed ID: 29718677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus.
    Peršin Fratnik Z; Plohl O; Kokol V; Fras Zemljič L
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling wettability by light: illuminating the molecular mechanism.
    Radüge C; Papastavrou G; Kurth DG; Motschmann H
    Eur Phys J E Soft Matter; 2003 Feb; 10(2):103-14. PubMed ID: 15011063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method.
    Zhu YQ; Yu CX; Li Y; Zhu QQ; Zhou L; Cao C; Yu TT; Du FP
    Pest Manag Sci; 2014 Mar; 70(3):462-9. PubMed ID: 23765738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prediction of Wettability and Adhesion of Lotion to Skin Based on the OWRK Method].
    Hashizaki K; Sunaga K; Oda Y; Bashuda M; Imai M; Goto Y; Taguchi H; Saito Y; Fujii M
    Yakugaku Zasshi; 2019; 139(4):635-640. PubMed ID: 30930399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.
    Chibowski EJ
    Adv Colloid Interface Sci; 2005 May; 113(2-3):121-31. PubMed ID: 15935143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance.
    Żołek-Tryznowska Z; Kałuża A
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33671033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Vesel A; Köstler S; Ribitsch V; Stana-Kleinschek K
    J Colloid Interface Sci; 2011 Jun; 358(2):604-10. PubMed ID: 21458821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of Aceria litchii (Keifer) infestation on the surface properties of litchi leaf hosts.
    Song Q; Zheng J; Chen S; Lan Y; Li H; Zeng L; Yue X
    Pest Manag Sci; 2024 Jun; 80(6):2647-2657. PubMed ID: 38394076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Surface Free Energy of PVC/EVA Polymer Blends: Comparison of Different Calculation Methods.
    Michalski MC; Hardy J; Saramago BJ
    J Colloid Interface Sci; 1998 Dec; 208(1):319-328. PubMed ID: 9820780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of effective dispersive and polar surface energies in heterogeneous self-assembled monolayer coatings.
    Zhuang YX; Hansen O
    Langmuir; 2009 May; 25(10):5437-41. PubMed ID: 19371057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Free Energy Determination of APEX Photosensitive Glass.
    Gaillard WR; Waddell E; Williams JD
    Micromachines (Basel); 2016 Feb; 7(3):. PubMed ID: 30407407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.