BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 23041243)

  • 21. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation.
    Gao JZ; Jain A; Motheram R; Gray DB; Hussain MA
    Int J Pharm; 2002 Apr; 237(1-2):1-14. PubMed ID: 11955799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.
    Liu R; Li L; Yin W; Xu D; Zang H
    Int J Pharm; 2017 Sep; 530(1-2):308-315. PubMed ID: 28743552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability.
    Hausman DS; Cambron RT; Sakr A
    Int J Pharm; 2005 Aug; 299(1-2):19-33. PubMed ID: 15979262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemometrics-based process analytical technology (PAT) tools: applications and adaptation in pharmaceutical and biopharmaceutical industries.
    Challa S; Potumarthi R
    Appl Biochem Biotechnol; 2013 Jan; 169(1):66-76. PubMed ID: 23138336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The construction and uses of factorial designs in the preparation of solid dosage forms. Part 2: Granulation in a fluidized bed.
    Gorodnichev VI; El-Banna HM; Andreev BV
    Pharmazie; 1981 Apr; 36(4):270-3. PubMed ID: 7255528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous manufacturing process monitoring of pharmaceutical solid dosage form: A case study.
    Roggo Y; Pauli V; Jelsch M; Pellegatti L; Elbaz F; Ensslin S; Kleinebudde P; Krumme M
    J Pharm Biomed Anal; 2020 Feb; 179():112971. PubMed ID: 31771809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.
    Alshihabi F; Vandamme T; Betz G
    Pharm Dev Technol; 2013 Feb; 18(1):73-84. PubMed ID: 22035287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.
    Liu H; Li M
    Int J Pharm; 2014 Nov; 475(1-2):256-69. PubMed ID: 25181553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous wet granulation using fluidized-bed techniques. I. Examination of powder mixing kinetics and preliminary granulation experiments.
    Gotthardt S; Knoch A; Lee G
    Eur J Pharm Biopharm; 1999 Nov; 48(3):189-97. PubMed ID: 10612029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed.
    Tok AT; Goh X; Ng WK; Tan RB
    AAPS PharmSciTech; 2008; 9(4):1083-91. PubMed ID: 18850276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of monitoring methods for pharmaceutical wet granulation.
    Hansuld EM; Briens L
    Int J Pharm; 2014 Sep; 472(1-2):192-201. PubMed ID: 24950366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single process for manufacturing spheres with a lipid base (HCO).
    Gauthier P; Cardot JM; Beyssac E; Aiache JM
    Pharm Dev Technol; 2012; 17(3):303-14. PubMed ID: 21175264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility assessment for a novel reverse-phase wet granulation process: the effect of liquid saturation and binder liquid viscosity.
    Wade JB; Martin GP; Long DF
    Int J Pharm; 2014 Nov; 475(1-2):450-61. PubMed ID: 25218187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of granule growth kinetics during in situ fluid bed melt granulation using in-line FBRM and SFT probes.
    Kukec S; Hudovornik G; Dreu R; Vrečer F
    Drug Dev Ind Pharm; 2014 Jul; 40(7):952-9. PubMed ID: 23662716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous twin screw granulation - An advanced alternative granulation technology for use in the pharmaceutical industry.
    Bandari S; Nyavanandi D; Kallakunta VR; Janga KY; Sarabu S; Butreddy A; Repka MA
    Int J Pharm; 2020 Apr; 580():119215. PubMed ID: 32194206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On-line monitoring of fluid bed granulation by photometric imaging.
    Soppela I; Antikainen O; Sandler N; Yliruusi J
    Eur J Pharm Biopharm; 2014 Nov; 88(3):879-85. PubMed ID: 25174556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring the fluidized bed granulation process based on S-statistic analysis of a pressure time series.
    Chaplin G; Pugsley T; Winters C
    AAPS PharmSciTech; 2005 Sep; 6(2):E198-201. PubMed ID: 16353978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of quality attributes of continuously produced granules using complementary pat tools.
    Fonteyne M; Soares S; Vercruysse J; Peeters E; Burggraeve A; Vervaet C; Remon JP; Sandler N; De Beer T
    Eur J Pharm Biopharm; 2012 Oct; 82(2):429-36. PubMed ID: 22892292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.
    Burggraeve A; Van Den Kerkhof T; Hellings M; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2010 Sep; 76(1):138-46. PubMed ID: 20554021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.
    Roßteuscher-Carl K; Fricke S; Hacker MC; Schulz-Siegmund M
    Int J Pharm; 2015 Dec; 496(2):751-8. PubMed ID: 26541302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.