BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 23041243)

  • 41. New perspectives for visual characterization of pharmaceutical solids.
    Laitinen N; Antikainen O; Rantanen J; Yliruusi J
    J Pharm Sci; 2004 Jan; 93(1):165-76. PubMed ID: 14648646
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding and predicting bed humidity in fluidized bed granulation.
    Hu X; Cunningham J; Winstead D
    J Pharm Sci; 2008 Apr; 97(4):1564-77. PubMed ID: 17705157
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of suitable amounts of water in fluidized bed granulation of pharmaceutical formulations using corresponding values of components.
    Miwa A; Yajima T; Ikuta H; Makado K
    Int J Pharm; 2008 Mar; 352(1-2):202-8. PubMed ID: 18160237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-depth experimental analysis of pharmaceutical twin-screw wet granulation in view of detailed process understanding.
    Verstraeten M; Van Hauwermeiren D; Lee K; Turnbull N; Wilsdon D; Am Ende M; Doshi P; Vervaet C; Brouckaert D; Mortier STFC; Nopens I; Beer T
    Int J Pharm; 2017 Aug; 529(1-2):678-693. PubMed ID: 28720539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Study on fluidized melt-granulation. I. Examination of the factors on the granulation].
    Haramiishi Y; Kitazawa Y; Sakai M; Kataoka K
    Yakugaku Zasshi; 1991 Sep; 111(9):515-23. PubMed ID: 1762053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Particle size, moisture, and fluidization variations described by indirect in-line physical measurements of fluid bed granulation.
    Lipsanen T; Närvänen T; Räikkönen H; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2008; 9(4):1070-7. PubMed ID: 18931917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Industrially feasible alternative approaches in the manufacture of solid dispersions: a technical report.
    Karanth H; Shenoy VS; Murthy RR
    AAPS PharmSciTech; 2006 Oct; 7(4):87. PubMed ID: 17233539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.
    Aleksić I; Đuriš J; Ibrić S; Parojčić J
    Int J Pharm; 2015 Dec; 496(2):627-35. PubMed ID: 26551673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using the Box-Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation.
    Liu H; Wang K; Schlindwein W; Li M
    Int J Pharm; 2013 May; 448(2):329-38. PubMed ID: 23583710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Implementation of real-time and in-line feedback control for a fluid bed granulation process.
    Reimers T; Thies J; Stöckel P; Dietrich S; Pein-Hackelbusch M; Quodbach J
    Int J Pharm; 2019 Aug; 567():118452. PubMed ID: 31233845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The consequences of granulate heterogeneity towards breakage and attrition upon fluid-bed drying.
    Nieuwmeyer F; van der Voort Maarschalk K; Vromans H
    Eur J Pharm Biopharm; 2008 Sep; 70(1):402-8. PubMed ID: 18440211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dry powder coating of pharmaceuticals: a review.
    Sauer D; Cerea M; DiNunzio J; McGinity J
    Int J Pharm; 2013 Dec; 457(2):488-502. PubMed ID: 23428881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation.
    Planinsek O; Pisek R; Trojak A; Srcic S
    Int J Pharm; 2000 Oct; 207(1-2):77-88. PubMed ID: 11036233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Applications of process analytical technology to crystallization processes.
    Yu LX; Lionberger RA; Raw AS; D'Costa R; Wu H; Hussain AS
    Adv Drug Deliv Rev; 2004 Feb; 56(3):349-69. PubMed ID: 14962586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Process control and scale-up of pharmaceutical wet granulation processes: a review.
    Faure A; York P; Rowe RC
    Eur J Pharm Biopharm; 2001 Nov; 52(3):269-77. PubMed ID: 11677069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Audible acoustics in high-shear wet granulation: application of frequency filtering.
    Hansuld EM; Briens L; McCann JA; Sayani A
    Int J Pharm; 2009 Aug; 378(1-2):37-44. PubMed ID: 19477258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of granules produced by high-shear and fluidized-bed granulation methods.
    Morin G; Briens L
    AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of a fractional factorial design to evaluate granulations prepared in a fluidized bed.
    Meshali M; El-Banna HM; El-Sabbagh H
    Pharmazie; 1983 May; 38(5):323-5. PubMed ID: 6611629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of the near-infrared spectroscopy in the pharmaceutical technology.
    Jamrógiewicz M
    J Pharm Biomed Anal; 2012 Jul; 66():1-10. PubMed ID: 22469433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wet granulation in rotary processor and fluid bed: comparison of granule and tablet properties.
    Kristensen J; Hansen VW
    AAPS PharmSciTech; 2006 Mar; 7(1):E22. PubMed ID: 16584153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.