These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23041433)

  • 21. The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission.
    Dafilis MP; Frascoli F; McVernon J; Heffernan JM; McCaw JM
    J Theor Biol; 2014 Nov; 361():124-32. PubMed ID: 25106793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaos analysis and explicit series solutions to the seasonally forced SIR epidemic model.
    Duarte J; Januário C; Martins N; Rogovchenko S; Rogovchenko Y
    J Math Biol; 2019 Jun; 78(7):2235-2258. PubMed ID: 30809691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.
    Otero M; Solari HG
    Math Biosci; 2010 Jan; 223(1):32-46. PubMed ID: 19861133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of using different types of periodic contact rate on the behaviour of infectious diseases: a simulation study.
    Moneim IA
    Comput Biol Med; 2007 Nov; 37(11):1582-90. PubMed ID: 17452036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An investigation of the combined effect of an annual mass gathering event and seasonal infectiousness on disease outbreak.
    Xu F; Connell McCluskey C
    Math Biosci; 2019 Jun; 312():50-58. PubMed ID: 30905600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revisited measles and chickenpox dynamics through orthogonal transformation.
    Kanjilal PP; Bhattacharya J
    J Theor Biol; 1999 Mar; 197(2):163-74. PubMed ID: 10074391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus.
    Capistrán MA; Moreles MA; Lara B
    Bull Math Biol; 2009 Nov; 71(8):1890-901. PubMed ID: 19568727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epidemic outbreaks on structured populations.
    Vazquez A
    J Theor Biol; 2007 Mar; 245(1):125-9. PubMed ID: 17097683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Analysis of inconstancy of epidemic outbreaks within the dynamics of seasonal rise in mortality].
    Kolesin ID
    Biofizika; 1995; 40(1):126-31. PubMed ID: 7703270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small amplitude, long period outbreaks in seasonally driven epidemics.
    Schwartz IB
    J Math Biol; 1992; 30(5):473-91. PubMed ID: 1578191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the origin of seasonal epidemics of mycoplasmal conjunctivitis.
    Dhondt AA; States SL; Dhondt KV; Schat KA
    J Anim Ecol; 2012 Sep; 81(5):996-1003. PubMed ID: 22524311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling spatial frailties in survival analysis of cucurbit downy mildew epidemics.
    Ojiambo PS; Kang EL
    Phytopathology; 2013 Mar; 103(3):216-27. PubMed ID: 23190114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recurrent epidemics in small world networks.
    Verdasca J; Telo da Gama MM; Nunes A; Bernardino NR; Pacheco JM; Gomes MC
    J Theor Biol; 2005 Apr; 233(4):553-61. PubMed ID: 15748915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous population dynamics and scaling laws near epidemic outbreaks.
    Widder A; Kuehn C
    Math Biosci Eng; 2016 Oct; 13(5):1093-1118. PubMed ID: 27775399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases.
    d'Onofrio A; Manfredi P
    J Theor Biol; 2009 Feb; 256(3):473-8. PubMed ID: 18992258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the time to reach a critical number of infections in epidemic models with infective and susceptible immigrants.
    Almaraz E; Gómez-Corral A; Rodríguez-Bernal MT
    Biosystems; 2016 Jun; 144():68-77. PubMed ID: 27068519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.