These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23041530)

  • 1. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI.
    Ryali S; Chen T; Supekar K; Menon V
    Neuroimage; 2013 Jan; 65():83-96. PubMed ID: 23041530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI.
    Ryali S; Chen T; Padmanabhan A; Cai W; Menon V
    J Neurosci Methods; 2015 Jan; 240():128-40. PubMed ID: 25450335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing affinity measures for parcellating brain structures based on resting state fMRI data: a validation on medial superior frontal cortex.
    Cheng H; Wu H; Fan Y
    J Neurosci Methods; 2014 Nov; 237():90-102. PubMed ID: 25224735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust brain parcellation using sparse representation on resting-state fMRI.
    Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T
    Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.
    Zhang L; Guindani M; Versace F; Vannucci M
    Neuroimage; 2014 Jul; 95():162-75. PubMed ID: 24650600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data.
    Røge RE; Madsen KH; Schmidt MN; Mørup M
    Neural Comput; 2017 Oct; 29(10):2712-2741. PubMed ID: 28777721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional parcellation of the hippocampus by semi-supervised clustering of resting state fMRI data.
    Cheng H; Zhu H; Zheng Q; Liu J; He G
    Sci Rep; 2020 Oct; 10(1):16402. PubMed ID: 33009447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated iterative reclustering framework for determining hierarchical functional networks in resting state fMRI.
    Shams SM; Afshin-Pour B; Soltanian-Zadeh H; Hossein-Zadeh GA; Strother SC
    Hum Brain Mapp; 2015 Sep; 36(9):3303-22. PubMed ID: 26032457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation.
    Yang Y; Fan L; Chu C; Zhuo J; Wang J; Fox PT; Eickhoff SB; Jiang T
    Neuroimage; 2016 Jan; 124(Pt A):300-309. PubMed ID: 26296500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithm.
    Yan X; Kelley S; Goldberg M; Biswal BB
    J Neurosci Methods; 2011 Jul; 199(1):108-18. PubMed ID: 21565220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.
    Mejia AF; Nebel MB; Shou H; Crainiceanu CM; Pekar JJ; Mostofsky S; Caffo B; Lindquist MA
    Neuroimage; 2015 May; 112():14-29. PubMed ID: 25731998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Let's Not Waste Time: Using Temporal Information in Clustered Activity Estimation with Spatial Adjacency Restrictions (CAESAR) for Parcellating FMRI Data.
    Janssen RJ; Jylänki P; van Gerven MA
    PLoS One; 2016; 11(12):e0164703. PubMed ID: 27935937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster-based analysis of FMRI data.
    Heller R; Stanley D; Yekutieli D; Rubin N; Benjamini Y
    Neuroimage; 2006 Nov; 33(2):599-608. PubMed ID: 16952467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-level parcellation approach for brain functional connectivity analysis.
    Karkar S; Faisan S; Thoraval L; Foucher JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3497-500. PubMed ID: 19964995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced hyperalignment via spatial prior information.
    Andreella A; Finos L; Lindquist MA
    Hum Brain Mapp; 2023 Mar; 44(4):1725-1740. PubMed ID: 36541577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic functional clustering of ventral premotor F5 in the macaque brain.
    Sharma S; Schaeffer DJ; Vinken K; Everling S; Nelissen K
    Neuroimage; 2021 Feb; 227():117647. PubMed ID: 33338618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered functional organization within the insular cortex in adult males with high-functioning autism spectrum disorder: evidence from connectivity-based parcellation.
    Yamada T; Itahashi T; Nakamura M; Watanabe H; Kuroda M; Ohta H; Kanai C; Kato N; Hashimoto RI
    Mol Autism; 2016; 7():41. PubMed ID: 27713815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Feb; 278():87-100. PubMed ID: 28065836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.