These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 23041781)

  • 1. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.
    Liu Z; Li G; Liu L
    Appl Radiat Isot; 2014 Apr; 86():1-6. PubMed ID: 24448270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.
    Kasesaz Y; Khalafi H; Rahmani F
    Appl Radiat Isot; 2013 Dec; 82():55-9. PubMed ID: 23954283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimized neutron-beam shaping assembly for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; Valda AA; Minsky DM
    Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of the new THOR epithermal neutron beam for BNCT.
    Tung CJ; Wang YL; Hsu FY; Chang SL; Liu YW
    Appl Radiat Isot; 2004 Nov; 61(5):861-4. PubMed ID: 15308158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam shaping assembly design of
    Zaidi L; Belgaid M; Taskaev S; Khelifi R
    Appl Radiat Isot; 2018 Sep; 139():316-324. PubMed ID: 29890472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.
    Durisi E; Koivunoro H; Visca L; Borla O; Zanini A
    Radiat Prot Dosimetry; 2010 Mar; 138(3):213-22. PubMed ID: 19939825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of dose components in head phantom for boron neutron capture therapy.
    da Silva AX; Crispim VR
    Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR.
    Hsu FY; Liu MT; Tung CJ; Hsueh Liu YW; Chang CC; Liu HM; Chou FI
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S130-3. PubMed ID: 19375926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GE PETtrace cyclotron as a neutron source for boron neutron capture therapy.
    Bosko A; Zhilchenkov D; Reece WD
    Appl Radiat Isot; 2004 Nov; 61(5):1057-62. PubMed ID: 15308192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.
    El Moussaoui F; El Bardouni T; Azahra M; Kamili A; Boukhal H
    Cancer Radiother; 2008 Sep; 12(5):360-4. PubMed ID: 18501657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BNCT of skin tumors using the high-energy D-T neutrons.
    Masoudi SF; Rasouli FS; Ghasemi M
    Appl Radiat Isot; 2017 Apr; 122():158-163. PubMed ID: 28161648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (9)Be(d,n)(10)B-based neutron sources for BNCT.
    Capoulat ME; Herrera MS; Minsky DM; González SJ; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():190-4. PubMed ID: 24332880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor.
    Gritzay OO; Kalchenko OI; Klimova NA; Razbudey VF; Sanzhur AI; Binney SE
    Appl Radiat Isot; 2004 Nov; 61(5):869-73. PubMed ID: 15308160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.