These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23041849)

  • 1. Tunable and selective resonant absorption in vertical nanowires.
    Wang B; Leu PW
    Opt Lett; 2012 Sep; 37(18):3756-8. PubMed ID: 23041849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires.
    Jia Y; Qiu M; Wu H; Cui Y; Fan S; Ruan Z
    Nano Lett; 2015 Aug; 15(8):5513-8. PubMed ID: 26171950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Length dependent optical characteristics analysis for semiconductor nanowires.
    Dhindsa N; Kohandani R; Saini SS
    Nanotechnology; 2020 May; 31(22):224001. PubMed ID: 32053794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antenna resonances in low aspect ratio semiconductor nanowires.
    Traviss DJ; Schmidt MK; Aizpurua J; Muskens OL
    Opt Express; 2015 Aug; 23(17):22771-87. PubMed ID: 26368246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption of light in a single vertical nanowire and a nanowire array.
    Anttu N
    Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.
    Fountaine KT; Kendall CG; Atwater HA
    Opt Express; 2014 May; 22 Suppl 3():A930-40. PubMed ID: 24922398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays.
    Dagytė V; Anttu N
    Nanotechnology; 2019 Jan; 30(2):025710. PubMed ID: 30411712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant modes of single silicon nanocavities excited by electron irradiation.
    Coenen T; van de Groep J; Polman A
    ACS Nano; 2013 Feb; 7(2):1689-98. PubMed ID: 23311326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires.
    Choi JS; Kim KH; No YS
    Opt Express; 2017 Sep; 25(19):22750-22759. PubMed ID: 29041581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodically Diameter-Modulated Semiconductor Nanowires for Enhanced Optical Absorption.
    Ko M; Baek SH; Song B; Kang JW; Kim SA; Cho CH
    Adv Mater; 2016 Apr; 28(13):2504-10. PubMed ID: 26833855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant leaky-mode spectral-band engineering and device applications.
    Ding Y; Magnusson R
    Opt Express; 2004 Nov; 12(23):5661-74. PubMed ID: 19488201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold.
    Ghobadi A; Dereshgi SA; Hajian H; Birant G; Butun B; Bek A; Ozbay E
    Nanoscale; 2017 Nov; 9(43):16652-16660. PubMed ID: 28901365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly ordered vertical GaAs nanowire arrays with dry etching and their optical properties.
    Dhindsa N; Chia A; Boulanger J; Khodadad I; LaPierre R; Saini SS
    Nanotechnology; 2014 Aug; 25(30):305303. PubMed ID: 25008170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires.
    Leahu G; Petronijevic E; Belardini A; Centini M; Li Voti R; Hakkarainen T; Koivusalo E; Guina M; Sibilia C
    Sci Rep; 2017 Jun; 7(1):2833. PubMed ID: 28588228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanowire antenna absorption probed with time-reversed fourier microscopy.
    Grzela G; Paniagua-Domínguez R; Barten T; van Dam D; Sánchez-Gil JA; Rivas JG
    Nano Lett; 2014 Jun; 14(6):3227-34. PubMed ID: 24810791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME
    Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.
    Nie KY; Li J; Chen X; Xu Y; Tu X; Ren FF; Du Q; Fu L; Kang L; Tang K; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    Sci Rep; 2017 Aug; 7(1):7503. PubMed ID: 28790363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.