BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23041857)

  • 1. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators.
    Lu H; Liu X; Mao D; Wang G
    Opt Lett; 2012 Sep; 37(18):3780-2. PubMed ID: 23041857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system.
    Ren X; Ren K; Cai Y
    Appl Opt; 2017 Nov; 56(31):H1-H9. PubMed ID: 29091660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor.
    Wang M; Zhang M; Wang Y; Zhao R; Yan S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Sensitivity Plasmonic Sensor Based on Fano Resonance with Inverted U-Shaped Resonator.
    Xiao G; Xu Y; Yang H; Ou Z; Chen J; Li H; Liu X; Zeng L; Li J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic nanosensor based on multiple independently tunable Fano resonances.
    Cheng L; Wang Z; He X; Cao P
    Beilstein J Nanotechnol; 2019; 10():2527-2537. PubMed ID: 31921531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano Resonance in a MIM Waveguide with Two Triangle Stubs Coupled with a Split-Ring Nanocavity for Sensing Application.
    Yang X; Hua E; Wang M; Wang Y; Wen F; Yan S
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal⁻Insulator⁻Metal Waveguide.
    Guo Z; Wen K; Hu Q; Lai W; Lin J; Fang Y
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application.
    Lu Y; Zhou Y; Cheng D; Li M; Xu Y; Xu J; Wang J
    Appl Opt; 2023 Nov; 62(33):8741-8748. PubMed ID: 38038019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nanostructure with Defect Based on Fano Resonance for Application on Refractive-Index and Temperature Sensing.
    Yang X; Hua E; Su H; Guo J; Yan S
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y; Zhang Z; Wang R; Hai Z; Xue C; Zhang W; Yan S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28383510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Fano Resonance in Asymmetric MIM Waveguide Structure.
    Zhao X; Zhang Z; Yan S
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.
    Zhang Z; Luo L; Xue C; Zhang W; Yan S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P; Shishodia MS
    Plasmonics; 2021; 16(6):2117-2124. PubMed ID: 34131417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Fano Resonance Sensing Characteristics Based on Racetrack Resonant Cavity.
    Yu Y; Cui J; Liu G; Zhao R; Zhu M; Zhang G; Zhang W
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S; Zhao T; Yu J; Pan D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Reference Refractive Index Sensor Based on Independently Controlled Double Resonances in Side-Coupled U-Shaped Resonators.
    Ren X; Ren K; Ming C
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29710806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region.
    Zheng G; Chen Y; Bu L; Xu L; Su W
    Opt Lett; 2016 Apr; 41(7):1582-5. PubMed ID: 27192292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure.
    Li Z; Wen K; Chen L; Lei L; Zhou J; Zhou D; Fang Y; Wu B
    Appl Opt; 2019 Jun; 58(18):4878-4883. PubMed ID: 31503812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects.
    Chou Chau YF; Chou Chao CT; Huang HJ; Kumara NTRN; Lim CM; Chiang HP
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.