These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23041898)

  • 1. Optical waveguide mode control by nanoslit-enhanced terahertz field.
    Novitsky A; Zalkovskij M; Malureanu R; Jepsen PU; Lavrinenko AV
    Opt Lett; 2012 Sep; 37(18):3903-5. PubMed ID: 23041898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.
    Navarro-Cía M; Wu J; Liu H; Mitrofanov O
    Sci Rep; 2016 Dec; 6():38926. PubMed ID: 27941845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration.
    Takushima Y; Shin SY; Chung YC
    Opt Express; 2007 Oct; 15(22):14783-92. PubMed ID: 19550758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable terahertz Kerr switching based on nonlinear polarization rotation in silicon waveguide.
    Mou M; Liu H; Huang N; Sun Q; Wang Z
    Appl Opt; 2014 Apr; 53(12):2741-7. PubMed ID: 24787603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation.
    Liu CY; Chen LW
    Opt Express; 2004 Jun; 12(12):2616-24. PubMed ID: 19475102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band.
    Navarro-Cía M; Vitiello MS; Bledt CM; Melzer JE; Harrington JA; Mitrofanov O
    Opt Express; 2013 Oct; 21(20):23748-55. PubMed ID: 24104287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a high-speed optical dark-soliton detector using a phase-shifted waveguide Bragg grating in reflection.
    Ngo NQ
    Opt Lett; 2007 Dec; 32(23):3402-4. PubMed ID: 18059947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-light application using dielectrics in a metallic terahertz plasmonic waveguide.
    Islam M; Barbhuyan ME
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):1053-1059. PubMed ID: 32543608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Polymer Asymmetric Mach-Zehnder Interferometer Sensor Model Based on Electrode Thermal Writing Waveguide Technology.
    Lin B; Yi Y; Cao Y; Lv J; Yang Y; Wang F; Sun X; Zhang D
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31547043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common-path spectral interferometry for single-shot terahertz electro-optics detection.
    Zheng S; Pan X; Cai Y; Lin Q; Li Y; Xu S; Li J; Fan D
    Opt Lett; 2017 Nov; 42(21):4263-4266. PubMed ID: 29088138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory.
    Vallejo FA; Hayden LM
    Opt Express; 2013 Mar; 21(5):5842-58. PubMed ID: 23482153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing.
    You B; Peng CC; Jhang JS; Chen HH; Yu CP; Lai WC; Liu TA; Peng JL; Lu JY
    Opt Express; 2014 May; 22(9):11340-50. PubMed ID: 24921831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elliptically polarized THz-wave generation from GaP-THz planar waveguide via collinear phase-matched difference frequency mixing.
    Saito K; Tanabe T; Oyama Y
    Opt Express; 2012 Nov; 20(23):26082-8. PubMed ID: 23187424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz photoconductive waveguide emitter with excitation by a tilted optical pulse front.
    Islam QU; Meng F; Thomson MD; Roskos HG
    Opt Express; 2020 Oct; 28(22):33673-33681. PubMed ID: 33115026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion.
    Mitrofanov O; Harrington JA
    Opt Express; 2010 Feb; 18(3):1898-903. PubMed ID: 20174017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz wave generation by nanoconfinement of light.
    Zangeneh HR; Jahromi MA
    Appl Opt; 2014 Mar; 53(9):1826-31. PubMed ID: 24663459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mach-Zehnder Interferometer Refractive Index Sensor Based on a Plasmonic Channel Waveguide.
    Lee DE; Lee YJ; Shin E; Kwon SH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29120381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Mach-Zehnder-based 2x2 all-optical switch using nonlinear two-mode interference waveguide.
    Ghayour R; Taheri AN; Fathi MT
    Appl Opt; 2008 Feb; 47(5):632-8. PubMed ID: 18268773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section.
    Yuan D; Dong Y; Liu Y; Li T
    Sensors (Basel); 2015 Aug; 15(9):21500-17. PubMed ID: 26343678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters.
    Guo YJ; Da Xu K; Tang X
    Opt Express; 2018 Apr; 26(8):10589-10598. PubMed ID: 29715993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.