BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23041942)

  • 1. Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts.
    Lee EH; Woo JS; Hwang JH; Park JH; Cho CH
    J Cell Physiol; 2013 May; 228(5):1038-44. PubMed ID: 23041942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and functional roles of angiopoietin-2 in skeletal muscles.
    Mofarrahi M; Hussain SN
    PLoS One; 2011; 6(7):e22882. PubMed ID: 21829546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiopoietin-1 enhances skeletal muscle regeneration in mice.
    Mofarrahi M; McClung JM; Kontos CD; Davis EC; Tappuni B; Moroz N; Pickett AE; Huck L; Harel S; Danialou G; Hussain SN
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(7):R576-89. PubMed ID: 25608750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Def-6, a guanine nucleotide exchange factor for Rac1, interacts with the skeletal muscle integrin chain alpha7A and influences myoblast differentiation.
    Samson T; Will C; Knoblauch A; Sharek L; von der Mark K; Burridge K; Wixler V
    J Biol Chem; 2007 May; 282(21):15730-42. PubMed ID: 17403664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of angiopoietin-1 in hypoxic pericytes: Regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation.
    Park YS; Kim G; Jin YM; Lee JY; Shin JW; Jo I
    Biochem Biophys Res Commun; 2016 Jan; 469(2):263-9. PubMed ID: 26655815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts.
    Tajhya RB; Hu X; Tanner MR; Huq R; Kongchan N; Neilson JR; Rodney GG; Horrigan FT; Timchenko LT; Beeton C
    Cell Death Dis; 2016 Oct; 7(10):e2426. PubMed ID: 27763639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways.
    Kook SH; Lim SS; Cho ES; Lee YH; Han SK; Lee KY; Kwon J; Hwang JW; Bae CH; Seo YK; Lee JC
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):371-7. PubMed ID: 25446117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COMP-Ang1, a chimeric form of Angiopoietin 1, enhances BMP2-induced osteoblast differentiation and bone formation.
    Jeong BC; Kim HJ; Bae IH; Lee KN; Lee KY; Oh WM; Kim SH; Kang IC; Lee SE; Koh GY; Kim KK; Koh JT
    Bone; 2010 Feb; 46(2):479-86. PubMed ID: 19782780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRPC1 regulates skeletal myoblast migration and differentiation.
    Louis M; Zanou N; Van Schoor M; Gailly P
    J Cell Sci; 2008 Dec; 121(Pt 23):3951-9. PubMed ID: 19001499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.
    Shi L; Zhou B; Li P; Schinckel AP; Liang T; Wang H; Li H; Fu L; Chu Q; Huang R
    Cell Signal; 2015 Sep; 27(9):1895-904. PubMed ID: 25958325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive feedback control between STIM1 and NFATc3 is required for C2C12 myoblast differentiation.
    Phuong TT; Yun YH; Kim SJ; Kang TM
    Biochem Biophys Res Commun; 2013 Jan; 430(2):722-8. PubMed ID: 23206701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sox4-mediated caldesmon expression facilitates differentiation of skeletal myoblasts.
    Jang SM; Kim JW; Kim D; Kim CH; An JH; Choi KH; Rhee S
    J Cell Sci; 2013 Nov; 126(Pt 22):5178-88. PubMed ID: 24046453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture of human skeletal muscle myoblasts: timing appearance and localization of dystrophin-glycoprotein complex and vinculin-talin-integrin complex.
    Trimarchi F; Favaloro A; Fulle S; Magaudda L; Puglielli C; Di Mauro D
    Cells Tissues Organs; 2006; 183(2):87-98. PubMed ID: 17053325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF.
    Metheny-Barlow LJ; Tian S; Hayes AJ; Li LY
    Microvasc Res; 2004 Nov; 68(3):221-30. PubMed ID: 15501241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide.
    Babaei S; Teichert-Kuliszewska K; Zhang Q; Jones N; Dumont DJ; Stewart DJ
    Am J Pathol; 2003 Jun; 162(6):1927-36. PubMed ID: 12759249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis.
    Kim YM; Kim KE; Koh GY; Ho YS; Lee KJ
    Cancer Res; 2006 Jun; 66(12):6167-74. PubMed ID: 16778190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha7 integrin expressing human fetal myogenic progenitors have stem cell-like properties and are capable of osteogenic differentiation.
    Ozeki N; Lim M; Yao CC; Tolar M; Kramer RH
    Exp Cell Res; 2006 Dec; 312(20):4162-80. PubMed ID: 17054947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteopontin and skeletal muscle myoblasts: association with muscle regeneration and regulation of myoblast function in vitro.
    Uaesoontrachoon K; Yoo HJ; Tudor EM; Pike RN; Mackie EJ; Pagel CN
    Int J Biochem Cell Biol; 2008; 40(10):2303-14. PubMed ID: 18490187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke.
    Zacharek A; Chen J; Cui X; Li A; Li Y; Roberts C; Feng Y; Gao Q; Chopp M
    J Cereb Blood Flow Metab; 2007 Oct; 27(10):1684-91. PubMed ID: 17356562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COMP-Angiopoietin-1 accelerates muscle regeneration through N-cadherin activation.
    Youn SW; Lee HC; Lee SW; Lee J; Jang H; Lee EJ; Kim HS
    Sci Rep; 2018 Aug; 8(1):12323. PubMed ID: 30120297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.