BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23042167)

  • 1. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays.
    Zhang L; Veres-Schalnat TA; Somogyi A; Pemberton JE; Maier RM
    Appl Environ Microbiol; 2012 Dec; 78(24):8611-22. PubMed ID: 23042167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264.
    Irorere VU; Smyth TJ; Cobice D; McClean S; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):6163-6174. PubMed ID: 29752487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of rhamnolipids: opportunities, challenges and strategies.
    Chong H; Li Q
    Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli.
    Rehm BH; Mitsky TA; Steinbüchel A
    Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442.
    Shatila F; Diallo MM; Şahar U; Ozdemir G; Yalçın HT
    Arch Microbiol; 2020 Aug; 202(6):1407-1417. PubMed ID: 32173773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Yield Di-Rhamnolipid Production by
    Li Z; Zhang Y; Lin J; Wang W; Li S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
    Déziel E; Lépine F; Milot S; Villemur R
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery.
    Zhao F; Wang Q; Zhang Y; Lei L
    Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.
    Zhu K; Rock CO
    J Bacteriol; 2008 May; 190(9):3147-54. PubMed ID: 18326581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids.
    Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants.
    Abdel-Mawgoud AM; Lépine F; Déziel E
    Chem Biol; 2014 Jan; 21(1):156-64. PubMed ID: 24374163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Marsudi S; Unno H; Hori K
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules.
    Smyth TJ; Perfumo A; Marchant R; Banat IM; Chen M; Thomas RK; Penfold J; Stevenson PS; Parry NJ
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1347-54. PubMed ID: 20405122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis.
    Tavares LF; Silva PM; Junqueira M; Mariano DC; Nogueira FC; Domont GB; Freire DM; Neves BC
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1909-21. PubMed ID: 23053103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation.
    Schmidberger A; Henkel M; Hausmann R; Schwartz T
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5779-91. PubMed ID: 23636691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.