These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23042184)
1. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment. Fang Y; Wilkins MJ; Yabusaki SB; Lipton MS; Long PE Appl Environ Microbiol; 2012 Dec; 78(24):8735-42. PubMed ID: 23042184 [TBL] [Abstract][Full Text] [Related]
3. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. Butler JE; He Q; Nevin KP; He Z; Zhou J; Lovley DR BMC Genomics; 2007 Jun; 8():180. PubMed ID: 17578578 [TBL] [Abstract][Full Text] [Related]
4. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. Aklujkar M; Young ND; Holmes D; Chavan M; Risso C; Kiss HE; Han CS; Land ML; Lovley DR BMC Genomics; 2010 Sep; 11():490. PubMed ID: 20828392 [TBL] [Abstract][Full Text] [Related]
5. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Scheibe TD; Mahadevan R; Fang Y; Garg S; Long PE; Lovley DR Microb Biotechnol; 2009 Mar; 2(2):274-86. PubMed ID: 21261921 [TBL] [Abstract][Full Text] [Related]
6. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. Feist AM; Nagarajan H; Rotaru AE; Tremblay PL; Zhang T; Nevin KP; Lovley DR; Zengler K PLoS Comput Biol; 2014 Apr; 10(4):e1003575. PubMed ID: 24762737 [TBL] [Abstract][Full Text] [Related]
7. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model. Fang Y; Scheibe TD; Mahadevan R; Garg S; Long PE; Lovley DR J Contam Hydrol; 2011 Mar; 122(1-4):96-103. PubMed ID: 21172725 [TBL] [Abstract][Full Text] [Related]
8. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. Zhuang K; Izallalen M; Mouser P; Richter H; Risso C; Mahadevan R; Lovley DR ISME J; 2011 Feb; 5(2):305-16. PubMed ID: 20668487 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite. Zheng S; Liu F; Li M; Xiao L; Wang O Sci China Life Sci; 2018 Jul; 61(7):787-798. PubMed ID: 29101585 [TBL] [Abstract][Full Text] [Related]
10. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats. Marozava S; Röling WF; Seifert J; Küffner R; von Bergen M; Meckenstock RU Syst Appl Microbiol; 2014 Jun; 37(4):287-95. PubMed ID: 24736031 [TBL] [Abstract][Full Text] [Related]
11. Microbial population and functional dynamics associated with surface potential and carbon metabolism. Ishii S; Suzuki S; Norden-Krichmar TM; Phan T; Wanger G; Nealson KH; Sekiguchi Y; Gorby YA; Bretschger O ISME J; 2014 May; 8(5):963-78. PubMed ID: 24351938 [TBL] [Abstract][Full Text] [Related]
12. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation. Yun J; Malvankar NS; Ueki T; Lovley DR ISME J; 2016 Feb; 10(2):310-20. PubMed ID: 26140532 [TBL] [Abstract][Full Text] [Related]
13. Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI). Wilkins MJ; Callister SJ; Miletto M; Williams KH; Nicora CD; Lovley DR; Long PE; Lipton MS Microb Biotechnol; 2011 Jan; 4(1):55-63. PubMed ID: 21255372 [TBL] [Abstract][Full Text] [Related]
14. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. Marozava S; Röling WF; Seifert J; Küffner R; von Bergen M; Meckenstock RU Syst Appl Microbiol; 2014 Jun; 37(4):277-86. PubMed ID: 24731775 [TBL] [Abstract][Full Text] [Related]
15. Geobacter sulfurreducens strain engineered for increased rates of respiration. Izallalen M; Mahadevan R; Burgard A; Postier B; Didonato R; Sun J; Schilling CH; Lovley DR Metab Eng; 2008 Sep; 10(5):267-75. PubMed ID: 18644460 [TBL] [Abstract][Full Text] [Related]
16. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Tang YJ; Chakraborty R; Martín HG; Chu J; Hazen TC; Keasling JD Appl Environ Microbiol; 2007 Jun; 73(12):3859-64. PubMed ID: 17468285 [TBL] [Abstract][Full Text] [Related]
17. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. Aklujkar M; Krushkal J; DiBartolo G; Lapidus A; Land ML; Lovley DR BMC Microbiol; 2009 May; 9():109. PubMed ID: 19473543 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Zhang T; Tremblay PL; Chaurasia AK; Smith JA; Bain TS; Lovley DR Appl Environ Microbiol; 2013 Dec; 79(24):7800-6. PubMed ID: 24096430 [TBL] [Abstract][Full Text] [Related]
19. Steady state protein levels in Geobacter metallireducens grown with iron (III) citrate or nitrate as terminal electron acceptor. Ahrendt AJ; Tollaksen SL; Lindberg C; Zhu W; Yates JR; Nevin KP; Babnigg G; Lovley DR; Giometti CS Proteomics; 2007 Nov; 7(22):4148-57. PubMed ID: 17994620 [TBL] [Abstract][Full Text] [Related]