These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23042381)

  • 1. Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis.
    Wei W; Shaw S; Lee K; Schmuki P
    Chemistry; 2012 Nov; 18(46):14622-6. PubMed ID: 23042381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molten o-H3PO4: A New Electrolyte for the Anodic Synthesis of Self-Organized Oxide Structures--WO3 Nanochannel Layers and Others.
    Altomare M; Pfoch O; Tighineanu A; Kirchgeorg R; Lee K; Selli E; Schmuki P
    J Am Chem Soc; 2015 May; 137(17):5646-9. PubMed ID: 25884483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoanodes based on nanostructured WO3 for water splitting.
    Tacca A; Meda L; Marra G; Savoini A; Caramori S; Cristino V; Bignozzi CA; Gonzalez Pedro V; Boix PP; Gimenez S; Bisquert J
    Chemphyschem; 2012 Aug; 13(12):3025-34. PubMed ID: 22532437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple-layered nanostructured WO₃ photoanodes with enhanced photocurrent generation and superior stability for photoelectrochemical solar energy conversion.
    Qi H; Wolfe J; Wang D; Fan HJ; Fichou D; Chen Z
    Nanoscale; 2014 Nov; 6(22):13457-62. PubMed ID: 25307270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis.
    Lee K; Kim D; Roy P; Paramasivam I; Birajdar BI; Spiecker E; Schmuki P
    J Am Chem Soc; 2010 Feb; 132(5):1478-9. PubMed ID: 20078123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting.
    Liu X; Wang F; Wang Q
    Phys Chem Chem Phys; 2012 Jun; 14(22):7894-911. PubMed ID: 22534756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel.
    Chen SY; Chang HH; Lai MY; Liu CY; Wang YL
    Nanotechnology; 2011 Sep; 22(36):365303. PubMed ID: 21836333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte.
    Lee K; Kim D; Schmuki P
    Chem Commun (Camb); 2011 May; 47(20):5789-91. PubMed ID: 21494725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse.
    Nah YC; Paramasivam I; Hahn R; Shrestha NK; Schmuki P
    Nanotechnology; 2010 Mar; 21(10):105704. PubMed ID: 20154369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Visible Light Active WO
    Pancielejko A; Rzepnikowska M; Zaleska-Medynska A; Łuczak J; Mazierski P
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes.
    Wei W; Lee K; Shaw S; Schmuki P
    Chem Commun (Camb); 2012 May; 48(35):4244-6. PubMed ID: 22441755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting.
    Ishihara H; Kannarpady GK; Khedir KR; Woo J; Trigwell S; Biris AS
    Phys Chem Chem Phys; 2011 Nov; 13(43):19553-60. PubMed ID: 21970978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes.
    Cristino V; Caramori S; Argazzi R; Meda L; Marra GL; Bignozzi CA
    Langmuir; 2011 Jun; 27(11):7276-84. PubMed ID: 21542603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator.
    Abe R; Higashi M; Domen K
    ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.
    Kim J; Lee CW; Choi W
    Environ Sci Technol; 2010 Sep; 44(17):6849-54. PubMed ID: 20698551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodic WO3 mesosponge @ carbon: a novel binder-less electrode for advanced energy storage devices.
    Pervez SA; Kim D; Doh CH; Farooq U; Choi HY; Choi JH
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7635-43. PubMed ID: 25794310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of multiple-shell WO3 hollow spheres by a binary carbonaceous template route and their applications in visible-light photocatalysis.
    Xi G; Yan Y; Ma Q; Li J; Yang H; Lu X; Wang C
    Chemistry; 2012 Oct; 18(44):13949-53. PubMed ID: 23001796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte.
    Solarska R; Jurczakowski R; Augustynski J
    Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.