These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23042416)

  • 1. Photon management in two-dimensional disordered media.
    Vynck K; Burresi M; Riboli F; Wiersma DS
    Nat Mater; 2012 Dec; 11(12):1017-22. PubMed ID: 23042416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber.
    Liu Z; Liu L; Lu H; Zhan P; Du W; Wan M; Wang Z
    Sci Rep; 2017 Mar; 7():43803. PubMed ID: 28256599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-perfect (>99%) dual-band absorption in the visible using ultrathin semiconducting gratings.
    Gong T; Munday JN
    Opt Express; 2022 Sep; 30(20):36500-36508. PubMed ID: 36258577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light scattering properties of self-organized nanostructured substrates for thin-film solar cells.
    Mennucci C; Del Sorbo S; Pirotta S; Galli M; Andreani LC; Martella C; Giordano MC; Buatier de Mongeot F
    Nanotechnology; 2018 Aug; 29(35):355301. PubMed ID: 29856732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core-Shell Plasmonic Particles.
    Malekshahi Byranvand M; Nemati Kharat A; Taghavinia N; Dabirian A
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16359-67. PubMed ID: 27300764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
    van Lare C; Lenzmann F; Verschuuren MA; Polman A
    Nano Lett; 2015 Aug; 15(8):4846-52. PubMed ID: 26107806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angular dependence of light trapping in nanophotonic thin-film solar cells.
    Smeets M; Smirnov V; Bittkau K; Meier M; Carius R; Rau U; Paetzold UW
    Opt Express; 2015 Nov; 23(24):A1575-88. PubMed ID: 26698805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color Contrast of Single-Layer Graphene under White Light Illumination Induced by Broadband Photon Management.
    Yu X; Fu S; Song Y; Wang H; Wang X; Kong J; Liu J
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3827-3835. PubMed ID: 31875675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light trapping in thin film silicon solar cells via phase separated disordered nanopillars.
    Donie YJ; Smeets M; Egel A; Lentz F; Preinfalk JB; Mertens A; Smirnov V; Lemmer U; Bittkau K; Gomard G
    Nanoscale; 2018 Apr; 10(14):6651-6659. PubMed ID: 29582026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric light-trapping nanostructure for enhanced light absorption in organic solar cells.
    Ju S; Kim H; Kwak H; Kang C; Jung I; Oh S; Lee SG; Kim J; Park HJ; Lee KT
    Sci Rep; 2023 Nov; 13(1):20649. PubMed ID: 38001140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles.
    Dabirian A; Taghavinia N
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14926-32. PubMed ID: 26135021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Scattering by Plasmonic Gratings of Circular Nanorods Using Lattice Sums Technique.
    Jandieri V; Yasumoto K; Pistora J; Erni D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31514442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light trapping in thin-film solar cells with randomly rough and hybrid textures.
    Kowalczewski P; Liscidini M; Andreani LC
    Opt Express; 2013 Sep; 21 Suppl 5():A808-20. PubMed ID: 24104576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption.
    Burresi M; Pratesi F; Vynck K; Prasciolu M; Tormen M; Wiersma DS
    Opt Express; 2013 Mar; 21 Suppl 2():A268-75. PubMed ID: 23482289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.