These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23042490)

  • 1. In situ atomic-scale imaging of electrochemical lithiation in silicon.
    Liu XH; Wang JW; Huang S; Fan F; Huang X; Liu Y; Krylyuk S; Yoo J; Dayeh SA; Davydov AV; Mao SX; Picraux ST; Zhang S; Li J; Zhu T; Huang JY
    Nat Nanotechnol; 2012 Nov; 7(11):749-56. PubMed ID: 23042490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries.
    Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H
    Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes.
    Karki K; Epstein E; Cho JH; Jia Z; Li T; Picraux ST; Wang C; Cumings J
    Nano Lett; 2012 Mar; 12(3):1392-7. PubMed ID: 22339576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.
    Cui LF; Ruffo R; Chan CK; Peng H; Cui Y
    Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries.
    McDowell MT; Lee SW; Nix WD; Cui Y
    Adv Mater; 2013 Sep; 25(36):4966-85. PubMed ID: 24038172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic lithiation behavior of crystalline silicon.
    Wagesreither S; Lugstein A; Bertagnolli E
    Nanotechnology; 2012 Dec; 23(49):495716. PubMed ID: 23165459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
    Wang Z; Gu M; Zhou Y; Zu X; Connell JG; Xiao J; Perea D; Lauhon LJ; Bang J; Zhang S; Wang C; Gao F
    Nano Lett; 2013 Sep; 13(9):4511-6. PubMed ID: 23944904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy.
    McDowell MT; Ryu I; Lee SW; Wang C; Nix WD; Cui Y
    Adv Mater; 2012 Nov; 24(45):6034-41. PubMed ID: 22945804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li segregation induces structure and strength changes at the amorphous Si/Cu interface.
    Stournara ME; Xiao X; Qi Y; Johari P; Lu P; Sheldon BW; Gao H; Shenoy VB
    Nano Lett; 2013 Oct; 13(10):4759-68. PubMed ID: 24000887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phase electrochemical lithiation in amorphous silicon.
    Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T
    Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.
    Liu Y; Liu XH; Nguyen BM; Yoo J; Sullivan JP; Picraux ST; Huang JY; Dayeh SA
    Nano Lett; 2013 Oct; 13(10):4876-83. PubMed ID: 24000810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.