These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23042490)

  • 21. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.
    Zhao K; Wang WL; Gregoire J; Pharr M; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2011 Jul; 11(7):2962-7. PubMed ID: 21692465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.
    Gu M; Parent LR; Mehdi BL; Unocic RR; McDowell MT; Sacci RL; Xu W; Connell JG; Xu P; Abellan P; Chen X; Zhang Y; Perea DE; Evans JE; Lauhon LJ; Zhang JG; Liu J; Browning ND; Cui Y; Arslan I; Wang CM
    Nano Lett; 2013; 13(12):6106-12. PubMed ID: 24224495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes.
    Liu N; Wu H; McDowell MT; Yao Y; Wang C; Cui Y
    Nano Lett; 2012 Jun; 12(6):3315-21. PubMed ID: 22551164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.
    Zhang Z; Wang Y; Ren W; Tan Q; Chen Y; Li H; Zhong Z; Su F
    Angew Chem Int Ed Engl; 2014 May; 53(20):5165-9. PubMed ID: 24700513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructures and electrochemical properties of Si-xTiNi alloys for lithium secondary batteries.
    Kwon HJ; Song JJ; Ahn DK; Hong SH; Cho JS; Moon JT; Sohn KY; Park WW
    J Nanosci Nanotechnol; 2013 May; 13(5):3417-21. PubMed ID: 23858870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2.
    Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW
    ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.
    Fu K; Yildiz O; Bhanushali H; Wang Y; Stano K; Xue L; Zhang X; Bradford PD
    Adv Mater; 2013 Sep; 25(36):5109-14. PubMed ID: 23907770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.
    Martinez de la Hoz JM; Leung K; Balbuena PB
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13457-65. PubMed ID: 24224826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries.
    Pharr M; Suo Z; Vlassak JJ
    Nano Lett; 2013; 13(11):5570-7. PubMed ID: 24099504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.