BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23042509)

  • 1. Nanoaggregates of a pentacenequinone derivative as reactors for the preparation of palladium nanoparticles.
    Bhalla V; Gupta A; Kumar M
    Chem Commun (Camb); 2012 Dec; 48(97):11862-4. PubMed ID: 23042509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol.
    Xue Y; Lu X; Bian X; Lei J; Wang C
    J Colloid Interface Sci; 2012 Aug; 379(1):89-93. PubMed ID: 22609190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous, catalytically active palladium nanostructures by tuning nanoparticle interactions in an organic medium.
    Halder A; Patra S; Viswanath B; Munichandraiah N; Ravishankar N
    Nanoscale; 2011 Feb; 3(2):725-30. PubMed ID: 21135970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central-radial bi-porous nanocatalysts with accessible high unit loading and robust magnetic recyclability for 4-nitrophenol reduction.
    Ao L; Hu X; Xu M; Zhang Q; Huang L
    Dalton Trans; 2020 Apr; 49(15):4669-4674. PubMed ID: 32211724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction.
    Kaur R; Giordano C; Gradzielski M; Mehta SK
    Chem Asian J; 2014 Jan; 9(1):189-98. PubMed ID: 24124135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids.
    Liu W; Yang X; Huang W
    J Colloid Interface Sci; 2006 Dec; 304(1):160-5. PubMed ID: 17007867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of self-supporting gold microstructures with three-dimensional morphologies by direct replication of diatom templates.
    Yu Y; Addai-Mensah J; Losic D
    Langmuir; 2010 Sep; 26(17):14068-72. PubMed ID: 20666460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis.
    Chen Y; Wang Q; Wang T
    Dalton Trans; 2015 May; 44(19):8867-75. PubMed ID: 25869174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of 4-dimethylaminopyridine-stabilized palladium nanoparticles.
    Flanagan KA; Sullivan JA; Müeller-Bunz H
    Langmuir; 2007 Dec; 23(25):12508-20. PubMed ID: 17985937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized poly(ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water.
    Feng B; Hou Z; Yang H; Wang X; Hu Y; Li H; Qiao Y; Zhao X; Huang Q
    Langmuir; 2010 Feb; 26(4):2505-13. PubMed ID: 20039597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity.
    Sun T; Zhang Z; Xiao J; Chen C; Xiao F; Wang S; Liu Y
    Sci Rep; 2013; 3():2527. PubMed ID: 23982312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides.
    Gangula A; Podila R; M R; Karanam L; Janardhana C; Rao AM
    Langmuir; 2011 Dec; 27(24):15268-74. PubMed ID: 22026721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol.
    Esumi K; Isono R; Yoshimura T
    Langmuir; 2004 Jan; 20(1):237-43. PubMed ID: 15745027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@Cu2O core-shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions.
    Sharma K; Kumar M; Bhalla V
    Chem Commun (Camb); 2015 Aug; 51(63):12529-32. PubMed ID: 26151737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-assisted preparation of palladium supported nanoparticles: a step toward size control.
    Rossi LM; Nangoi IM; Costa NJ
    Inorg Chem; 2009 Jun; 48(11):4640-2. PubMed ID: 19400564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-acid-based, lipid-directed, in situ synthesis and fabrication of gold nanoparticles on silica: a metamaterial framework with pronounced catalytic activity.
    Ray S; Takafuji M; Ihara H
    Nanotechnology; 2012 Dec; 23(49):495301. PubMed ID: 23149883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Catalytic Efficiency of Nanostructured β-CoMoO₄ in the Reduction of the Ortho-, Meta- and Para-Nitrophenol Isomers.
    Al-Wadaani F; Omer A; Abboudi M; Oudghiri Hassani H; Rakass S; Messali M; Benaissa M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29425122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.
    Hosseinkhani B; Søbjerg LS; Rotaru AE; Emtiazi G; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Jan; 109(1):45-52. PubMed ID: 21830201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-mediated, green synthesis of palladium nanodendrites for catalytic reduction of nitroarenes.
    Topuz F; Uyar T
    J Colloid Interface Sci; 2019 May; 544():206-216. PubMed ID: 30849618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.