BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23042514)

  • 1. Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy.
    Gjersing E; Happs RM; Sykes RW; Doeppke C; Davis MF
    Biotechnol Bioeng; 2013 Mar; 110(3):721-8. PubMed ID: 23042514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved method of analysis of biomass sugars using high-performance liquid chromatography.
    Agblevor FA; Murden A; Hames BR
    Biotechnol Lett; 2004 Aug; 26(15):1207-11. PubMed ID: 15289675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line desalting and carbohydrate analysis for immobilized enzyme hydrolysis of waste cellulosic biomass by column-switching high-performance liquid chromatography.
    Cheng C; Chen CS; Hsieh PH
    J Chromatogr A; 2010 Apr; 1217(14):2104-10. PubMed ID: 20181346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination of sugar content in corn stover hydrolysates using near infrared spectroscopy.
    Xu F; Wang D
    Bioresour Technol; 2013 Nov; 147():293-298. PubMed ID: 24001558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of biomass sugars using a novel HPLC method.
    Agblevor FA; Hames BR; Schell D; Chum HL
    Appl Biochem Biotechnol; 2007 Mar; 136(3):309-26. PubMed ID: 17625236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Feb; 109(2):353-62. PubMed ID: 21898366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma.
    Montanti J; Nghiem NP; Johnston DB
    Appl Biochem Biotechnol; 2011 Jul; 164(5):655-65. PubMed ID: 21274657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy.
    Tewari JC; Dixit V; Cho BK; Malik KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved method for analysis of biomass sugars and galacturonic acid by anion exchange chromatography.
    Widmer W
    Biotechnol Lett; 2010 Mar; 32(3):435-8. PubMed ID: 19898748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid analysis of carbohydrates in aqueous extracts and hydrolysates of biomass using a carbonate-modified anion-exchange column.
    Sevcik RS; Mowery RA; Becker C; Chambliss CK
    J Chromatogr A; 2011 Mar; 1218(9):1236-43. PubMed ID: 21277580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20.
    Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E
    FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of biomass sugars and galacturonic acid by gradient anion exchange chromatography and pulsed amperometric detection without post-column addition.
    Widmer W
    Biotechnol Lett; 2011 Feb; 33(2):365-8. PubMed ID: 20978822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a reaction model to improve calculation of the sugar recovery standard for sugar analysis.
    Shen J; Wyman CE
    Biotechnol Bioeng; 2012 Jan; 109(1):300-5. PubMed ID: 21809326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD.
    Liu X; Ai N; Zhang H; Lu M; Ji D; Yu F; Ji J
    Carbohydr Res; 2012 May; 353():111-4. PubMed ID: 22516168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits.
    Liu Y; Ying Y; Yu H; Fu X
    J Agric Food Chem; 2006 Apr; 54(8):2810-5. PubMed ID: 16608193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.
    Obama P; Ricochon G; Muniglia L; Brosse N
    Bioresour Technol; 2012 May; 112():156-63. PubMed ID: 22424922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.