BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23042606)

  • 1. LpxI structures reveal how a lipid A precursor is synthesized.
    Metzger LE; Lee JK; Finer-Moore JS; Raetz CR; Stroud RM
    Nat Struct Mol Biol; 2012 Nov; 19(11):1132-8. PubMed ID: 23042606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis.
    Metzger LE; Raetz CR
    Biochemistry; 2010 Aug; 49(31):6715-26. PubMed ID: 20608695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa.
    Okada C; Wakabayashi H; Kobayashi M; Shinoda A; Tanaka I; Yao M
    Sci Rep; 2016 Sep; 6():32822. PubMed ID: 27609419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis.
    Cho J; Lee CJ; Zhao J; Young HE; Zhou P
    Nat Microbiol; 2016 Aug; 1(11):16154. PubMed ID: 27780190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis.
    Young HE; Zhao J; Barker JR; Guan Z; Valdivia RH; Zhou P
    mBio; 2016 Mar; 7(2):e00090. PubMed ID: 27006461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis.
    Babinski KJ; Ribeiro AA; Raetz CR
    J Biol Chem; 2002 Jul; 277(29):25937-46. PubMed ID: 12000770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene.
    Babinski KJ; Kanjilal SJ; Raetz CR
    J Biol Chem; 2002 Jul; 277(29):25947-56. PubMed ID: 12000771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release.
    Bohl HO; Ieong P; Lee JK; Lee T; Kankanala J; Shi K; Demir Ö; Kurahashi K; Amaro RE; Wang Z; Aihara H
    J Biol Chem; 2018 May; 293(21):7969-7981. PubMed ID: 29626094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthesis of gram-negative endotoxin. Formation of lipid A disaccharides from monosaccharide precursors in extracts of Escherichia coli.
    Ray BL; Painter G; Raetz CR
    J Biol Chem; 1984 Apr; 259(8):4852-9. PubMed ID: 6370995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis utilizes Mn2+ cluster for catalysis.
    Young HE; Donohue MP; Smirnova TI; Smirnov AI; Zhou P
    J Biol Chem; 2013 Sep; 288(38):26987-27001. PubMed ID: 23897835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.
    Hardwick SW; Gubbey T; Hug I; Jenal U; Luisi BF
    Open Biol; 2012 Apr; 2(4):120028. PubMed ID: 22724061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer modeling of two inorganic pyrophosphatases.
    Vihinen M; Lundin M; Baltscheffsky H
    Biochem Biophys Res Commun; 1992 Jul; 186(1):122-8. PubMed ID: 1321599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel metallo-beta-lactamase, Mbl1b, produced by the environmental bacterium Caulobacter crescentus.
    Simm AM; Higgins CS; Pullan ST; Avison MB; Niumsup P; Erdozain O; Bennett PM; Walsh TR
    FEBS Lett; 2001 Dec; 509(3):350-4. PubMed ID: 11749954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of two haloalkane dehalogenases: DccA from Caulobacter crescentus and DsaA from Saccharomonospora azurea.
    Carlucci L; Zhou E; Malashkevich VN; Almo SC; Mundorff EC
    Protein Sci; 2016 Apr; 25(4):877-86. PubMed ID: 26833751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.
    Patel KB; Toh E; Fernandez XB; Hanuszkiewicz A; Hardy GG; Brun YV; Bernards MA; Valvano MA
    J Bacteriol; 2012 May; 194(10):2646-57. PubMed ID: 22408159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes.
    Lokanath NK; Pampa KJ; Takio K; Kunishima N
    J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional annotation of two new carboxypeptidases from the amidohydrolase superfamily of enzymes.
    Xiang DF; Xu C; Kumaran D; Brown AC; Sauder JM; Burley SK; Swaminathan S; Raushel FM
    Biochemistry; 2009 Jun; 48(21):4567-76. PubMed ID: 19358546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review of recent developments in the gram-negative bacterial UDP-2,3-diacylglucosamine hydrolase (LpxH) enzyme.
    Karthikeyan D; Kumar S; Jayaprakash NS
    Int J Biol Macromol; 2024 May; 267(Pt 2):131327. PubMed ID: 38574903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of lipid A precursors in Escherichia coli. A membrane-bound enzyme that transfers a palmitoyl residue from a glycerophospholipid to lipid X.
    Brozek KA; Bulawa CE; Raetz CR
    J Biol Chem; 1987 Apr; 262(11):5170-9. PubMed ID: 3549717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.