BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23042683)

  • 1. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA.
    Lukinavicius G; Lapinaite A; Urbanaviciute G; Gerasimaite R; Klimasauskas S
    Nucleic Acids Res; 2012 Dec; 40(22):11594-602. PubMed ID: 23042683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase.
    Merkiene E; Klimasauskas S
    Nucleic Acids Res; 2005; 33(1):307-15. PubMed ID: 15653631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F; Lurz R; Weinhold E
    Molecules; 2015 Nov; 20(11):20805-22. PubMed ID: 26610450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of conserved residues in HhaI DNA methyltransferase.
    Sankpal UT; Rao DN
    Nucleic Acids Res; 2002 Jun; 30(12):2628-38. PubMed ID: 12060679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based sequence alignment of three AdoMet-dependent DNA methyltransferases.
    O'Gara M; McCloy K; Malone T; Cheng X
    Gene; 1995 May; 157(1-2):135-8. PubMed ID: 7607477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Expansion of the Methyltransferase Reaction: Tools for DNA Labeling and Epigenome Analysis.
    Vilkaitis G; Masevičius V; Kriukienė E; Klimašauskas S
    Acc Chem Res; 2023 Nov; 56(22):3188-3197. PubMed ID: 37904501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N6-Adenosine DNA Methyltransferase from H. pylori 98-10 Strain in Complex with DNA and AdoMet: Structural Insights from in Silico Studies.
    Singh S; Guruprasad L
    J Phys Chem B; 2017 Jan; 121(2):365-378. PubMed ID: 28054779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase.
    Vilkaitis G; Merkiene E; Serva S; Weinhold E; Klimasauskas S
    J Biol Chem; 2001 Jun; 276(24):20924-34. PubMed ID: 11283006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase.
    Kossykh VG; Schlagman SL; Hattman S
    FEBS Lett; 1995 Aug; 370(1-2):75-7. PubMed ID: 7649307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of DNA methyltransferases.
    Cheng X
    Annu Rev Biophys Biomol Struct; 1995; 24():293-318. PubMed ID: 7663118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function, and mechanism of HhaI DNA methyltransferases.
    Sankpal UT; Rao DN
    Crit Rev Biochem Mol Biol; 2002; 37(3):167-97. PubMed ID: 12139442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
    Gong W; O'Gara M; Blumenthal RM; Cheng X
    Nucleic Acids Res; 1997 Jul; 25(14):2702-15. PubMed ID: 9207015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for DNA binding and enzyme action derived from crystallographic studies of the TaqI N6-adenine-methyltransferase.
    Schluckebier G; Labahn J; Granzin J; Schildkraut I; Saenger W
    Gene; 1995 May; 157(1-2):131-4. PubMed ID: 7607476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific labeling of nucleic acids and proteins with methyltransferases and cofactor analogues.
    Hanz GM; Jung B; Giesbertz A; Juhasz M; Weinhold E
    J Vis Exp; 2014 Nov; (93):e52014. PubMed ID: 25490674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Labeling Using DNA Methyltransferases.
    Tomkuvienė M; Kriukienė E; Klimašauskas S
    Adv Exp Med Biol; 2016; 945():511-535. PubMed ID: 27826850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes.
    O'Gara M; Klimasauskas S; Roberts RJ; Cheng X
    J Mol Biol; 1996 Sep; 261(5):634-45. PubMed ID: 8800212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A directed evolution design of a GCG-specific DNA hemimethylase.
    Gerasimaite R; Vilkaitis G; Klimasauskas S
    Nucleic Acids Res; 2009 Nov; 37(21):7332-41. PubMed ID: 19783820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of S-Adenosyl-L-Methionine Analogs with Extended Transferable Groups for Methyltransferase-Directed Labeling of DNA and RNA.
    Masevičius V; Nainytė M; Klimašauskas S
    Curr Protoc Nucleic Acid Chem; 2016 Mar; 64():1.36.1-1.36.13. PubMed ID: 26967468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.