BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23042905)

  • 1. Heat and α1-adrenergic responsiveness in human skeletal muscle feed arteries: the role of nitric oxide.
    Ives SJ; Andtbacka RH; Kwon SH; Shiu YT; Ruan T; Noyes RD; Zhang QJ; Symons JD; Richardson RS
    J Appl Physiol (1985); 2012 Dec; 113(11):1690-8. PubMed ID: 23042905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. α1- and α2-adrenergic responsiveness in human skeletal muscle feed arteries: the role of TRPV ion channels in heat-induced sympatholysis.
    Gifford JR; Ives SJ; Park SY; Andtbacka RH; Hyngstrom JR; Mueller MT; Treiman GS; Ward C; Trinity JD; Richardson RS
    Am J Physiol Heart Circ Physiol; 2014 Nov; 307(9):H1288-97. PubMed ID: 25172894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha(1)-adrenergic-mediated eNOS phosphorylation in intact arteries.
    Looft-Wilson RC; Todd SE; Araj CA; Mutchler SM; Goodell CA
    Vascul Pharmacol; 2013 Jan; 58(1-2):112-7. PubMed ID: 22982055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRPV
    Ives SJ; Park SY; Kwon OS; Gifford JR; Andtbacka RHI; Hyngstrom JR; Richardson RS
    Exp Physiol; 2017 Sep; 102(9):1245-1258. PubMed ID: 28681979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human skeletal muscle feed arteries studied in vitro: the effect of temperature on α(1)-adrenergic responsiveness.
    Ives SJ; Andtbacka RH; Noyes RD; McDaniel J; Amann M; Witman MA; Symons JD; Wray DW; Richardson RS
    Exp Physiol; 2011 Sep; 96(9):907-18. PubMed ID: 21685444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH.
    Ives SJ; Andtbacka RH; Noyes RD; Morgan RG; Gifford JR; Park SY; Symons JD; Richardson RS
    Exp Physiol; 2013 Jan; 98(1):256-67. PubMed ID: 22798402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telmisartan inhibits vasoconstriction via PPARγ-dependent expression and activation of endothelial nitric oxide synthase.
    Yuen CY; Wong WT; Tian XY; Wong SL; Lau CW; Yu J; Tomlinson B; Yao X; Huang Y
    Cardiovasc Res; 2011 Apr; 90(1):122-9. PubMed ID: 21156825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent vasodilatory signalling modulates α
    Hearon CM; Kirby BS; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2016 Dec; 594(24):7435-7453. PubMed ID: 27561916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric-oxide synthase knockout modulates Ca²⁺-sensing receptor expression and signaling in mouse mesenteric arteries.
    Awumey EM; Bridges LE; Williams CL; Diz DI
    J Pharmacol Exp Ther; 2013 Jul; 346(1):38-47. PubMed ID: 23639802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderate hypothermia attenuates α
    Nurullahoglu-Atalik KE; Cenker A
    Physiol Int; 2016 Dec; 103(4):481-486. PubMed ID: 28229627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitric oxide in exercise sympatholysis.
    Buckwalter JB; Taylor JC; Hamann JJ; Clifford PS
    J Appl Physiol (1985); 2004 Jul; 97(1):417-23; discussion 416. PubMed ID: 15020577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasodilatory function in human skeletal muscle feed arteries with advancing age: the role of adropin.
    Kwon OS; Andtbacka RHI; Hyngstrom JR; Richardson RS
    J Physiol; 2019 Apr; 597(7):1791-1804. PubMed ID: 30690728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta.
    Silva BR; Pernomian L; Grando MD; Bendhack LM
    Eur J Pharmacol; 2014 Sep; 738():192-9. PubMed ID: 24886887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylephrine Decreases Vascular Tension in Goat Arteries in Specific Circumstances.
    Raj RR; Subramani S
    PLoS One; 2016; 11(6):e0158551. PubMed ID: 27362703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow does not alter eNOS phosphoryation at Ser1179 or Thr495 in preconstricted mouse mesenteric arteries.
    Looft-Wilson RC; Todd SE; Berberich KM; Wolfert MR
    Physiol Rep; 2018 Sep; 6(17):e13864. PubMed ID: 30247813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INCREASED OXIDATIVE STRESS AND DOWN REGULATION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE (ENOS) IN THE KIDNEY ATTEN- UATE THE RESPONSIVENESS OF (XlB ADRENERGIC RECEPTORS IN THE KIDNEY OF RATS WITH LEFT VENTRICULAR HYPERTROPHY.
    Ahmad A; Sattar M; Khan SA; Abdullah NA; Johns EJ; Afzal S
    Acta Pol Pharm; 2017 Mar; 74(2):413-423. PubMed ID: 29624247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin modulation of an endothelial nitric oxide component present in the alpha2- and beta-adrenergic responses in human forearm.
    Lembo G; Iaccarino G; Vecchione C; Barbato E; Izzo R; Fontana D; Trimarco B
    J Clin Invest; 1997 Oct; 100(8):2007-14. PubMed ID: 9329964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha
    Mishra RC; Rahman MM; Davis MJ; Wulff H; Hill MA; Braun AP
    Physiol Rep; 2018 May; 6(9):e13703. PubMed ID: 29756401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide and cGMP mediate alpha1D-adrenergic receptor-Stimulated protein secretion and p42/p44 MAPK activation in rat lacrimal gland.
    Hodges RR; Shatos MA; Tarko RS; Vrouvlianis J; Gu J; Dartt DA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2781-9. PubMed ID: 16043851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylephrine induces endogenous noradrenaline release in the rat vas deferens through nitric oxide synthase pathway.
    Pinto R; Barrento C; Mota-Filipe H; Lima BS
    Pharmacol Toxicol; 2003 Oct; 93(4):191-6. PubMed ID: 14629744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.