These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23043156)

  • 1. Optogenetic strategies to dissect the neural circuits that underlie reward and addiction.
    Stamatakis AM; Stuber GD
    Cold Spring Harb Perspect Med; 2012 Nov; 2(11):. PubMed ID: 23043156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic modulation of neural circuits that underlie reward seeking.
    Stuber GD; Britt JP; Bonci A
    Biol Psychiatry; 2012 Jun; 71(12):1061-7. PubMed ID: 22196983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.
    Yoo JH; Zell V; Wu J; Punta C; Ramajayam N; Shen X; Faget L; Lilascharoen V; Lim BK; Hnasko TS
    J Neurosci; 2017 Jan; 37(1):38-46. PubMed ID: 28053028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural integration of reward, arousal, and feeding: recruitment of VTA, lateral hypothalamus, and ventral striatal neurons.
    Gutierrez R; Lobo MK; Zhang F; de Lecea L
    IUBMB Life; 2011 Oct; 63(10):824-30. PubMed ID: 21901814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic investigation of neural mechanisms for alcohol-use disorder.
    Juarez B; Liu Y; Zhang L; Han MH
    Alcohol; 2019 Feb; 74():29-38. PubMed ID: 30621856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.
    Brocka M; Helbing C; Vincenz D; Scherf T; Montag D; Goldschmidt J; Angenstein F; Lippert M
    Neuroimage; 2018 Aug; 177():88-97. PubMed ID: 29723641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States.
    Rodriguez-Romaguera J; Namboodiri VMK; Basiri ML; Stamatakis AM; Stuber GD
    Cold Spring Harb Perspect Med; 2022 Mar; 12(3):. PubMed ID: 32513671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors.
    Cardozo Pinto DF; Lammel S
    Pharmacol Biochem Behav; 2018 Nov; 174():23-32. PubMed ID: 28257849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula-Tegmental Circuitry and Constrain Reward Seeking.
    Tooley J; Marconi L; Alipio JB; Matikainen-Ankney B; Georgiou P; Kravitz AV; Creed MC
    Biol Psychiatry; 2018 Jun; 83(12):1012-1023. PubMed ID: 29452828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural circuits provide insights into reward and aversion.
    Chen W
    Front Neural Circuits; 2022; 16():1002485. PubMed ID: 36389177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases.
    Lüscher C; Pascoli V; Creed M
    Curr Opin Neurobiol; 2015 Dec; 35():95-100. PubMed ID: 26264408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the elements: an optogenetic approach to understanding the neural circuits of fear.
    Johansen JP; Wolff SB; Lüthi A; LeDoux JE
    Biol Psychiatry; 2012 Jun; 71(12):1053-60. PubMed ID: 22169096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring neural circuit properties from optogenetic stimulation.
    Avery M; Nassi J; Reynolds J
    PLoS One; 2018; 13(10):e0205386. PubMed ID: 30365490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction.
    Saunders BT; Richard JM; Janak PH
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140210. PubMed ID: 26240425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits.
    Wietek J; Nozownik A; Pulin M; Saraf-Sinik I; Matosevich N; Gowrishankar R; Gat A; Malan D; Brown BJ; Dine J; Imambocus BN; Levy R; Sauter K; Litvin A; Regev N; Subramaniam S; Abrera K; Summarli D; Goren EM; Mizrachi G; Bitton E; Benjamin A; Copits BA; Sasse P; Rost BR; Schmitz D; Bruchas MR; Soba P; Oren-Suissa M; Nir Y; Wiegert JS; Yizhar O
    Nat Methods; 2024 Jul; 21(7):1275-1287. PubMed ID: 38811857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Natural rewarding and drug rewarding].
    Cui CL; Han JS
    Sheng Li Ke Xue Jin Zhan; 2005 Apr; 36(2):103-8. PubMed ID: 16222967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.
    Han X; Jing MY; Zhao TY; Wu N; Song R; Li J
    Metab Brain Dis; 2017 Oct; 32(5):1491-1502. PubMed ID: 28523568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic investigation of neural circuits in vivo.
    Carter ME; de Lecea L
    Trends Mol Med; 2011 Apr; 17(4):197-206. PubMed ID: 21353638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VTA GABA Neurons at the Interface of Stress and Reward.
    Bouarab C; Thompson B; Polter AM
    Front Neural Circuits; 2019; 13():78. PubMed ID: 31866835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.