These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 23043221)
21. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation. Gols R; Roosjen M; Dijkman H; Dicke M J Chem Ecol; 2003 Dec; 29(12):2651-66. PubMed ID: 14969353 [TBL] [Abstract][Full Text] [Related]
22. Effect of sequential induction by Mamestra brassicae L. and Tetranychus urticae Koch on lima bean plant indirect defense. Menzel TR; Huang TY; Weldegergis BT; Gols R; van Loon JJ; Dicke M J Chem Ecol; 2014 Sep; 40(9):977-85. PubMed ID: 25244951 [TBL] [Abstract][Full Text] [Related]
23. Mint companion plants attract the predatory mite Phytoseiulus persimilis. Togashi K; Goto M; Rim H; Hattori S; Ozawa R; Arimura GI Sci Rep; 2019 Feb; 9(1):1704. PubMed ID: 30737441 [TBL] [Abstract][Full Text] [Related]
24. The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs. Vanas V; Enigl M; Walzer A; Schausberger P Exp Appl Acarol; 2006; 39(1):1-11. PubMed ID: 16680562 [TBL] [Abstract][Full Text] [Related]
25. Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine. Abad-Moyano R; Urbaneja A; Hoffmann D; Schausberger P Exp Appl Acarol; 2010 Apr; 50(4):329-41. PubMed ID: 19777356 [TBL] [Abstract][Full Text] [Related]
26. THE INFLUENCE OF VARIABLE TEMPERATURE AND HUMIDITY ON THE PREDATION EFFICIENCY OF P. PERSIMILIS, N. CALIFORNICUS AND N. FALLACIS. Audenaert J; Vangansbeke D; Verhoeven R; De Clercq P; Tirry L; Gobin B Commun Agric Appl Biol Sci; 2014; 79(2):117-22. PubMed ID: 26084089 [TBL] [Abstract][Full Text] [Related]
27. Interactions between natural enemies: Effect of a predatory mite on transmission of the fungus Neozygites floridana in two-spotted spider mite populations. Trandem N; Berdinesen R; Pell JK; Klingen I J Invertebr Pathol; 2016 Feb; 134():35-37. PubMed ID: 26796096 [TBL] [Abstract][Full Text] [Related]
28. Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. Tahmasebi Z; Mohammadi H; Arimura G; Muroi A; Kant MR Exp Appl Acarol; 2014 Jun; 63(2):217-39. PubMed ID: 24531863 [TBL] [Abstract][Full Text] [Related]
29. Predator avoidance by phytophagous mites is affected by the presence of herbivores in a neighboring patch. Choh Y; Takabayashi J J Chem Ecol; 2010 Jun; 36(6):614-9. PubMed ID: 20467794 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper. Palevsky E; Walzer A; Gal S; Schausberger P Exp Appl Acarol; 2008 Jun; 45(1-2):15-27. PubMed ID: 18566897 [TBL] [Abstract][Full Text] [Related]
31. The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Skirvin DJ; Stavrinides MC; Skirvin DJ Bull Entomol Res; 2003 Aug; 93(4):343-50. PubMed ID: 12908920 [TBL] [Abstract][Full Text] [Related]
32. Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari: Phytoseiidae). Maeda T; Takabayashi J; Yano S; Takafuji A Exp Appl Acarol; 2000; 24(5-6):415-25. PubMed ID: 11156166 [TBL] [Abstract][Full Text] [Related]
33. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. Fernández Ferrari MC; Schausberger P Naturwissenschaften; 2013 Jun; 100(6):541-9. PubMed ID: 23644512 [TBL] [Abstract][Full Text] [Related]
34. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. de Boer JG; Posthumus MA; Dicke M J Chem Ecol; 2004 Nov; 30(11):2215-30. PubMed ID: 15672666 [TBL] [Abstract][Full Text] [Related]
35. The effect of host plants on Tetranychus evansi, Tetranychus urticae (Acari: Tetranychidae) and on their fungal pathogen Neozygites floridana (Entomophthorales: Neozygitaceae). Wekesa VW; Vital S; Silva RA; Ortega EM; Klingen I; Delalibera I J Invertebr Pathol; 2011 Jun; 107(2):139-45. PubMed ID: 21510956 [TBL] [Abstract][Full Text] [Related]
36. A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Shimoda T Exp Appl Acarol; 2010 Jan; 50(1):9-22. PubMed ID: 19507042 [TBL] [Abstract][Full Text] [Related]
37. Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E,E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. Brillada C; Nishihara M; Shimoda T; Garms S; Boland W; Maffei ME; Arimura G New Phytol; 2013 Dec; 200(4):1200-11. PubMed ID: 23952336 [TBL] [Abstract][Full Text] [Related]
38. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis. Rojas MG; Morales-Ramos JA J Chem Ecol; 2010 Dec; 36(12):1354-62. PubMed ID: 20953678 [TBL] [Abstract][Full Text] [Related]
39. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Ataide LM; Pappas ML; Schimmel BC; Lopez-Orenes A; Alba JM; Duarte MV; Pallini A; Schuurink RC; Kant MR Plant Sci; 2016 Nov; 252():300-310. PubMed ID: 27717467 [TBL] [Abstract][Full Text] [Related]
40. Maternal effect determines drought resistance of eggs in the predatory mite Phytoseiulus persimilis. Le Hesran S; Groot T; Knapp M; Bukovinszky T; Nugroho JE; Beretta G; Dicke M Oecologia; 2020 Jan; 192(1):29-41. PubMed ID: 31773312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]