These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 23043237)

  • 1. Loss of nuclear flavanols during drought periods in Taxus baccata.
    Feucht W; Treutter D; Dithmar H; Polster J
    Plant Biol (Stuttg); 2013 May; 15(3):462-70. PubMed ID: 23043237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavanol binding of nuclei from tree species.
    Feucht W; Treutter D; Polster J
    Plant Cell Rep; 2004 Jan; 22(6):430-6. PubMed ID: 14595514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols.
    Mueller-Harvey I; Feucht W; Polster J; Trnková L; Burgos P; Parker AW; Botchway SW
    Anal Chim Acta; 2012 Mar; 719():68-75. PubMed ID: 22340533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microspore development of three coniferous species: affinity of nuclei for flavonoids.
    Feucht W; Treutter D; Dithmar H; Polster J
    Tree Physiol; 2008 Dec; 28(12):1783-91. PubMed ID: 19193561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclei of tea flowers as targets for flavanols.
    Feucht W; Dithmar H; Polster J
    Plant Biol (Stuttg); 2004 Nov; 6(6):696-701. PubMed ID: 15570474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavanols in somatic cell division and male meiosis of tea (Camellia sinensis) anthers.
    Feucht W; Treutter D; Dithmar H; Polster J
    Plant Biol (Stuttg); 2005 Mar; 7(2):168-75. PubMed ID: 15822012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are histones the targets for flavan-3-ols (catechins) in nuclei?
    Polster J; Dithmar H; Walter F
    Biol Chem; 2003 Jul; 384(7):997-1006. PubMed ID: 12956416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclei of Tsuga canadensis: role of flavanols in chromatin organization.
    Feucht W; Schmid M; Treutter D
    Int J Mol Sci; 2011; 12(10):6834-55. PubMed ID: 22072922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair.
    Zhou H; Madden BJ; Muddiman DC; Zhang Z
    Biochemistry; 2006 Mar; 45(9):2852-61. PubMed ID: 16503640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses.
    Feucht W; Schmid M; Treutter D
    Plants (Basel); 2015 Sep; 4(3):710-27. PubMed ID: 27135348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catechin production in cultured cells of Taxus cuspidata and Taxus baccata.
    Bulgakov VP; Tchernoded GK; Veselova MV; Fedoreyev SA; Muzarok TI; Zhuravlev YN
    Biotechnol Lett; 2011 Sep; 33(9):1879-83. PubMed ID: 21544613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of histone H3 tails with combinatorial lysine modifications under the reprogrammed genetic code for the investigation on epigenetic markers.
    Kang TJ; Yuzawa S; Suga H
    Chem Biol; 2008 Nov; 15(11):1166-74. PubMed ID: 19022177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the effect of type of dairy product and of chocolate matrix on the oral absorption of monomeric chocolate flavanols in a small animal model.
    Gossai D; Lau-Cam CA
    Pharmazie; 2009 Mar; 64(3):202-9. PubMed ID: 19348344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular paths to 'decoding' and 'wiping' histone lysine methylation.
    Kustatscher G; Ladurner AG
    Curr Opin Chem Biol; 2007 Dec; 11(6):628-35. PubMed ID: 17988933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators.
    Hassan AH; Awad S; Al-Natour Z; Othman S; Mustafa F; Rizvi TA
    Biochem J; 2007 Feb; 402(1):125-33. PubMed ID: 17049045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stage-dependent redistributions of acetylated histones in nuclei of the early preimplantation mouse embryo.
    Stein P; Worrad DM; Belyaev ND; Turner BM; Schultz RM
    Mol Reprod Dev; 1997 Aug; 47(4):421-9. PubMed ID: 9211426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclei of plants as a sink for flavanols.
    Feucht W; Polster J
    Z Naturforsch C J Biosci; 2001; 56(5-6):479-81. PubMed ID: 11421466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process.
    Andres-Lacueva C; Monagas M; Khan N; Izquierdo-Pulido M; Urpi-Sarda M; Permanyer J; Lamuela-Raventós RM
    J Agric Food Chem; 2008 May; 56(9):3111-7. PubMed ID: 18412367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia.
    Payne C; Braun RE
    Dev Biol; 2006 May; 293(2):461-72. PubMed ID: 16549060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus.
    Launholt D; Merkle T; Houben A; Schulz A; Grasser KD
    Plant Cell; 2006 Nov; 18(11):2904-18. PubMed ID: 17114349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.