These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

816 related articles for article (PubMed ID: 23043347)

  • 81. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nanostructured silicon anodes for lithium ion rechargeable batteries.
    Teki R; Datta MK; Krishnan R; Parker TC; Lu TM; Kumta PN; Koratkar N
    Small; 2009 Oct; 5(20):2236-42. PubMed ID: 19739146
    [TBL] [Abstract][Full Text] [Related]  

  • 83. One-Step Grown Carbonaceous Germanium Nanowires and Their Application as Highly Efficient Lithium-Ion Battery Anodes.
    Garcia A; Biswas S; McNulty D; Roy A; Raha S; Trabesinger S; Nicolosi V; Singha A; Holmes JD
    ACS Appl Energy Mater; 2022 Feb; 5(2):1922-1932. PubMed ID: 35252775
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Silicon nanowire fabric as a lithium ion battery electrode material.
    Chockla AM; Harris JT; Akhavan VA; Bogart TD; Holmberg VC; Steinhagen C; Mullins CB; Stevenson KJ; Korgel BA
    J Am Chem Soc; 2011 Dec; 133(51):20914-21. PubMed ID: 22070459
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.
    Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.
    Liu D; Yang Z; Wang P; Li F; Wang D; He D
    Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries.
    Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

  • 91. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

  • 92. ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency.
    Memarzadeh Lotfabad E; Kalisvaart P; Cui K; Kohandehghan A; Kupsta M; Olsen B; Mitlin D
    Phys Chem Chem Phys; 2013 Aug; 15(32):13646-57. PubMed ID: 23836149
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries.
    Shao J; Li X; Wan Z; Zhang L; Ding Y; Zhang L; Qu Q; Zheng H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7671-5. PubMed ID: 23915302
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries.
    Yoo S; Lee JI; Shin M; Park S
    ChemSusChem; 2013 Jul; 6(7):1153-7. PubMed ID: 23765592
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.
    Geng H; Zhou Q; Pan Y; Gu H; Zheng J
    Nanoscale; 2014 Apr; 6(7):3889-94. PubMed ID: 24598908
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electrochemical behavior of alpha-MoO3 nanorods as cathode materials for rechargeable lithium batteries.
    Wen Z; Wang Q; Li J
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2117-22. PubMed ID: 17025135
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si-Void@SiO
    Liu Q; Cui Z; Zou R; Zhang J; Xu K; Hu J
    Small; 2017 Apr; 13(13):. PubMed ID: 28121377
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Freeze-drying-assisted synthesis of hierarchically porous carbon/germanium hybrid for high-efficiency lithium-ion batteries.
    Xiao Y; Cao M
    Chem Asian J; 2014 Oct; 9(10):2859-65. PubMed ID: 25070205
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.