BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23043369)

  • 1. Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence.
    Kim K; Lee JW; Shin KS
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5498-504. PubMed ID: 23043369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and surface enhanced Raman microscopy of microstructured polyethylenimine/DNA multilayers.
    Dootz R; Nie J; Du B; Herminghaus S; Pfohl T
    Langmuir; 2006 Feb; 22(4):1735-41. PubMed ID: 16460099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver-particle-based surface-enhanced Raman scattering spectroscopy for biomolecular sensing and recognition.
    Kim K; Park HK; Kim NH
    Langmuir; 2006 Mar; 22(7):3421-7. PubMed ID: 16548610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closely adjacent gold nanoparticles linked by chemisorption of neutral rhodamine 123 molecules providing enormous SERS intensity.
    Yajima T; Yu Y; Futamata M
    Phys Chem Chem Phys; 2011 Jul; 13(27):12454-62. PubMed ID: 21655612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH effect on surface potential of polyelectrolytes-capped gold nanoparticles probed by surface-enhanced Raman scattering.
    Kim K; Lee JW; Choi JY; Shin KS
    Langmuir; 2010 Dec; 26(24):19163-9. PubMed ID: 21114273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates.
    Li JM; Ma WF; Wei C; You LJ; Guo J; Hu J; Wang CC
    Langmuir; 2011 Dec; 27(23):14539-44. PubMed ID: 22011076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering.
    Marsich L; Bonifacio A; Mandal S; Krol S; Beleites C; Sergo V
    Langmuir; 2012 Sep; 28(37):13166-71. PubMed ID: 22958086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering.
    Tan S; Erol M; Sukhishvili S; Du H
    Langmuir; 2008 May; 24(9):4765-71. PubMed ID: 18376892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection.
    Hao Z; Mansuer M; Guo Y; Zhu Z; Wang X
    Talanta; 2016; 146():533-9. PubMed ID: 26695301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides.
    Li P; Dong R; Wu Y; Liu H; Kong L; Yang L
    Talanta; 2014 Sep; 127():269-75. PubMed ID: 24913887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates.
    Lee J; Seo J; Kim D; Shin S; Lee S; Mahata C; Lee HS; Min BW; Lee T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9053-60. PubMed ID: 24824186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver-particle-based surface-enhanced resonance Raman scattering spectroscopy for biomolecular sensing and recognition.
    Kim K; Lee HS; Kim NH
    Anal Bioanal Chem; 2007 May; 388(1):81-8. PubMed ID: 17318510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AuNS@Ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions.
    Li H; Chen Q; Hassan MM; Ouyang Q; Jiao T; Xu Y; Chen M
    Anal Chim Acta; 2018 Aug; 1018():94-103. PubMed ID: 29605140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectra of rhodamine 19 octadecylamide.
    Miljanić S; Dijanosić A; Meić Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1008-12. PubMed ID: 20079680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Photothermal and Surface-Enhanced Raman Spectroscopy Effect from Spiky Noble Metal Nanoparticles Wrapped within Graphene-Polymer Layers: Using Layer-by-layer Modified Reduced Graphene Oxide as Reactive Precursors.
    Li X; Zhang Y; Wu Y; Duan Y; Luan X; Zhang Q; An Q
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19353-61. PubMed ID: 26269466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters.
    Tang Y; Zhang Y; Su Y; Lv Y
    Talanta; 2013 Oct; 115():830-6. PubMed ID: 24054670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.