These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
5. Genome-scale NAD(H/(+)) availability patterns as a differentiating feature between Saccharomyces cerevisiae and Scheffersomyces stipitis in relation to fermentative metabolism. Acevedo A; Aroca G; Conejeros R PLoS One; 2014; 9(1):e87494. PubMed ID: 24489927 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827 [TBL] [Abstract][Full Text] [Related]
7. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Malina C; Yu R; Björkeroth J; Kerkhoven EJ; Nielsen J Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903663 [TBL] [Abstract][Full Text] [Related]
8. Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative. Imura M; Nitta K; Iwakiri R; Matsuda F; Shimizu H; Fukusaki E J Biosci Bioeng; 2020 Jan; 129(1):52-58. PubMed ID: 31537452 [TBL] [Abstract][Full Text] [Related]
9. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
10. Quantifying the parametric sensitivity of ethanol production by Scheffersomyces (Pichia) stipitis: development and verification of a method based on the principles of growth on mixtures of complementary substrates. Maitra S; Narang A Microbiology (Reading); 2018 Nov; 164(11):1348-1360. PubMed ID: 30265234 [TBL] [Abstract][Full Text] [Related]
11. RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Yuan T; Ren Y; Meng K; Feng Y; Yang P; Wang S; Shi P; Wang L; Xie D; Yao B Appl Microbiol Biotechnol; 2011 Dec; 92(6):1237-49. PubMed ID: 22086068 [TBL] [Abstract][Full Text] [Related]
12. A multi-level study of recombinant Pichia pastoris in different oxygen conditions. Baumann K; Carnicer M; Dragosits M; Graf AB; Stadlmann J; Jouhten P; Maaheimo H; Gasser B; Albiol J; Mattanovich D; Ferrer P BMC Syst Biol; 2010 Oct; 4():141. PubMed ID: 20969759 [TBL] [Abstract][Full Text] [Related]
13. The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis. Baumann K; Dato L; Graf AB; Frascotti G; Dragosits M; Porro D; Mattanovich D; Ferrer P; Branduardi P BMC Genomics; 2011 May; 12():218. PubMed ID: 21554735 [TBL] [Abstract][Full Text] [Related]
14. Adaptation of central metabolite pools to variations in growth rate and cultivation conditions in Saccharomyces cerevisiae. Kumar K; Venkatraman V; Bruheim P Microb Cell Fact; 2021 Mar; 20(1):64. PubMed ID: 33750414 [TBL] [Abstract][Full Text] [Related]
15. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). Ruchala J; Kurylenko OO; Dmytruk KV; Sibirny AA J Ind Microbiol Biotechnol; 2020 Jan; 47(1):109-132. PubMed ID: 31637550 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of growth and sugar consumption in yeasts. van Dijken JP; Weusthuis RA; Pronk JT Antonie Van Leeuwenhoek; 1993; 63(3-4):343-52. PubMed ID: 8279829 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in cell suspensions and agarose-immobilized cultures of Pichia stipitis and Saccharomyces cerevisiae. Lohmeier-Vogel EM; McIntyre DD; Vogel HJ Appl Environ Microbiol; 1996 Aug; 62(8):2832-8. PubMed ID: 8702275 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Patra P; Das M; Kundu P; Ghosh A Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474 [TBL] [Abstract][Full Text] [Related]
19. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. Jouhten P; Rintala E; Huuskonen A; Tamminen A; Toivari M; Wiebe M; Ruohonen L; Penttilä M; Maaheimo H BMC Syst Biol; 2008 Jul; 2():60. PubMed ID: 18613954 [TBL] [Abstract][Full Text] [Related]
20. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]