BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2304349)

  • 1. High-performance liquid chromatographic analysis of catecholamines in biological samples by liquid/liquid extraction prepurification.
    Tsuchiya H; Hayashi T
    J Pharmacol Methods; 1990 Mar; 23(1):21-30. PubMed ID: 2304349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated high-performance liquid chromatographic assay for the analysis of free catecholamines in urine.
    Said R; Robinet D; Barbier C; Sartre J; Huguet C
    J Chromatogr; 1990 Aug; 530(1):11-8. PubMed ID: 2277100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection.
    Nalewajko E; Wiszowata A; Kojło A
    J Pharm Biomed Anal; 2007 Apr; 43(5):1673-81. PubMed ID: 17289328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of catecholamines in rat heart tissue and plasma samples by liquid chromatography with electrochemical detection.
    Eriksson BM; Persson BA
    J Chromatogr; 1982 Mar; 228():143-54. PubMed ID: 7076741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of urinary and plasma norepinephrine, epinephrine, dopamine, dihydroxyphenylalanine, and dihydroxyphenylacetic acid by coupled-column high-performance liquid chromatography on C8 and C18 stationary phases.
    Benedict CR
    J Chromatogr; 1987 Jan; 385():369-75. PubMed ID: 3104375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine.
    Smedes F; Kraak JC; Poppe H
    J Chromatogr; 1982 Aug; 231(1):25-39. PubMed ID: 7119063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microextraction by packed sorbent (MEPS) to analyze catecholamines in innovative biological samples.
    Saracino MA; Santarcangelo L; Raggi MA; Mercolini L
    J Pharm Biomed Anal; 2015 Feb; 104():122-9. PubMed ID: 25497894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of catecholamines in rat tissue by precolumn dansylation using micro high-performance liquid chromatography with fluorescence detection.
    Yamada K; Aizawa Y
    J Pharmacol Methods; 1983 Feb; 9(1):1-6. PubMed ID: 6843135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination of free and conjugated catecholamines, 3,4-dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid in the urine and blood plasma by high pressure liquid chromatography].
    Kogan BM; Drozdov AZ; Man'kovskaia IV; Filatova TS
    Klin Lab Diagn; 1995; (3):25-8. PubMed ID: 8689050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of catecholamines and methoxycatecholamines excretion patterns in pig and rat urine by ion-exchange liquid chromatography with electrochemical detection.
    Hay M; Mormède P
    J Chromatogr B Biomed Sci Appl; 1997 Dec; 703(1-2):15-23. PubMed ID: 9448058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the pH and the importance of the internal standard on the measurement of the urinary catecholamines by high-performance liquid chromatography.
    Rivero-Marcotegui A; Grijalba-Uche A; Palacios-Sarrasqueta M; García-Merlo S
    Eur J Clin Chem Clin Biochem; 1995 Nov; 33(11):873-5. PubMed ID: 8620067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of dopamine in 35 subregions of the rat caudate-putamen: a high performance liquid chromatography with electrochemical detection analysis.
    Di Paolo T; Daigle M; Dupont A
    Can J Neurol Sci; 1982 Nov; 9(4):421-7. PubMed ID: 7151026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive high-performance liquid chromatography system with fluorometric detection of three urinary catecholamines in the same range.
    Mori K; Imai K
    Anal Biochem; 1985 May; 146(2):283-6. PubMed ID: 3927768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of urinary free noradrenaline by reversed-phase high-performance liquid chromatography with on-line extraction and fluorescence derivatization.
    Nozaki O; Ohba Y
    J Chromatogr; 1990 Aug; 515():621-7. PubMed ID: 2283382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of free and total catecholamines and salsolinol in urine by ion-pair reversed-phase liquid chromatography with electrochemical detection after a one-step sample clean-up.
    Odink J; Sandman H; Schreurs WH
    J Chromatogr; 1986 Apr; 377():145-54. PubMed ID: 3711203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential assay for urinary catecholamines by use of liquid chromatography with fluorescence detection.
    Jackman GP
    Clin Chem; 1981 Jul; 27(7):1202-4. PubMed ID: 7237783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid chromatography/luminescence techniques.
    Mori K
    Life Sci; 1987 Aug; 41(7):901-4. PubMed ID: 3613851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatographic assay of free norepinephrine, epinephrine, dopamine, vanillylmandelic acid and homovanillic acid.
    Gerlo E; Malfait R
    J Chromatogr; 1985 Sep; 343(1):9-20. PubMed ID: 4066865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatographic determination of catecholamines and their precursor and metabolites in human urine and plasma by postcolumn derivatization involving chemical oxidation followed by fluorescence reaction.
    Jeon HK; Nohta H; Ohkura Y
    Anal Biochem; 1992 Feb; 200(2):332-8. PubMed ID: 1632497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma.
    Silva LI; Ferreira FD; Freitas AC; Rocha-Santos TA; Duarte AC
    Talanta; 2009 Dec; 80(2):853-7. PubMed ID: 19836563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.