BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23043592)

  • 21. Physical properties and compact analysis of commonly used direct compression binders.
    Zhang Y; Law Y; Chakrabarti S
    AAPS PharmSciTech; 2003 Dec; 4(4):E62. PubMed ID: 15198557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of dibutyrylchitin as new excipient for sustained drug release.
    Casettari L; Cespi M; Castagnino E
    Drug Dev Ind Pharm; 2012 Aug; 38(8):979-84. PubMed ID: 22124336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roller compaction of moist pharmaceutical powders.
    Wu CY; Hung WL; Miguélez-Morán AM; Gururajan B; Seville JP
    Int J Pharm; 2010 May; 391(1-2):90-7. PubMed ID: 20176096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the effects of excipients on the powder flow characteristics of theophylline anhydrous powder formulations.
    Nagel KM; Peck GE
    Drug Dev Ind Pharm; 2003 Mar; 29(3):277-87. PubMed ID: 12741609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].
    Si GN; Chen L; Li BG
    Yao Xue Xue Bao; 2014 Apr; 49(4):550-7. PubMed ID: 24974476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid formulation screening with a Multipart Microscale Fluid bed Powder processor.
    Kivikero N; Murtomaa M; Antikainen O; Hatara J; Juppo AM; Sandler N
    Pharm Dev Technol; 2011 Aug; 16(4):358-66. PubMed ID: 20387990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders.
    Uzondu B; Leung LY; Mao C; Yang CY
    Int J Pharm; 2018 May; 543(1-2):234-244. PubMed ID: 29621552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmaceutical excipients properties and screw feeder performance in continuous processing lines: a Quality by Design (QbD) approach.
    Santos B; Carmo F; Schlindwein W; Muirhead G; Rodrigues C; Cabral L; Westrup J; Pitt K
    Drug Dev Ind Pharm; 2018 Dec; 44(12):2089-2097. PubMed ID: 30113219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward better understanding of powder avalanching and shear cell parameters of drug-excipient blends to design minimal weight variability into pharmaceutical capsules.
    Nalluri VR; Puchkov M; Kuentz M
    Int J Pharm; 2013 Feb; 442(1-2):49-56. PubMed ID: 22917747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol.
    Adeoye O; Alebiowu G
    Pharm Dev Technol; 2014 Dec; 19(8):901-10. PubMed ID: 24089696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders.
    Planinsek O; Buckton G
    J Pharm Sci; 2003 Jun; 92(6):1286-94. PubMed ID: 12761817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of moisture and magnesium stearate concentration on flow properties of cohesive granular materials.
    Faqih AM; Mehrotra A; Hammond SV; Muzzio FJ
    Int J Pharm; 2007 May; 336(2):338-45. PubMed ID: 17289312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.
    Zhou QT; Armstrong B; Larson I; Stewart PJ; Morton DA
    Eur J Pharm Sci; 2010 Aug; 40(5):412-21. PubMed ID: 20433919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients.
    Tran DT; Majerová D; Veselý M; Kulaviak L; Ruzicka MC; Zámostný P
    Int J Pharm; 2019 Feb; 556():383-394. PubMed ID: 30529657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process. Part II. Granulation and granule properties.
    Li J; Tao L; Dali M; Buckley D; Gao J; Hubert M
    J Pharm Sci; 2011 Jan; 100(1):294-310. PubMed ID: 20575062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entrainment of lactose inhalation powders: a study using laser diffraction.
    Watling CP; Elliott JA; Cameron RE
    Eur J Pharm Sci; 2010 Jul; 40(4):352-8. PubMed ID: 20417708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.
    Willemsz TA; Hooijmaijers R; Rubingh CM; Tran TN; Frijlink HW; Vromans H; van der Voort Maarschalk K
    Eur J Pharm Sci; 2012 Jan; 45(1-2):211-5. PubMed ID: 22127372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of binder droplet dimension on granulation rate during fluidized bed granulation.
    Fujiwara M; Dohi M; Otsuka T; Yamashita K; Sako K
    Chem Pharm Bull (Tokyo); 2013; 61(3):320-5. PubMed ID: 23449201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow rate and flow equation of pharmaceutical free-flowable powder excipients.
    Sklubalová Z; Zatloukal Z
    Pharm Dev Technol; 2013 Feb; 18(1):106-11. PubMed ID: 22149908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.