BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23044030)

  • 1. Use of species sensitivity distributions to predict no-effect concentrations of an antifouling biocide, pyridine triphenylborane, for marine organisms.
    Mochida K; Onduka T; Amano H; Ito M; Ito K; Tanaka H; Fujii K
    Mar Pollut Bull; 2012 Dec; 64(12):2807-14. PubMed ID: 23044030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms.
    Onduka T; Ojima D; Ito M; Ito K; Mochida K; Fujii K
    Arch Environ Contam Toxicol; 2013 Nov; 65(4):724-32. PubMed ID: 23929384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial analysis of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (Sea-Nine 211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan.
    Mochida K; Hano T; Onduka T; Ichihashi H; Amano H; Ito M; Ito K; Tanaka H; Fujii K
    Environ Pollut; 2015 Sep; 204():233-40. PubMed ID: 25982549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent.
    Okamura H; Kitano S; Toyota S; Harino H; Thomas KV
    Chemosphere; 2009 Mar; 74(9):1275-8. PubMed ID: 19095285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species sensitivity distribution approach to primary risk analysis of the metal pyrithione photodegradation product, 2,2'-dipyridyldisulfide in the Inland Sea and induction of notochord undulation in fish embryos.
    Mochida K; Amano H; Ito K; Ito M; Onduka T; Ichihashi H; Kakuno A; Harino H; Fujii K
    Aquat Toxicol; 2012 Aug; 118-119():152-163. PubMed ID: 22561701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water.
    Zhou X; Okamura H; Nagata S
    Chemosphere; 2007 May; 67(10):1904-10. PubMed ID: 17257651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of five antifouling biocides on settlement and growth of zoospores from the marine macroalga Ulva lactuca L.
    Wendt I; Arrhenius Å; Backhaus T; Hilvarsson A; Holm K; Langford K; Tunovic T; Blanck H
    Bull Environ Contam Toxicol; 2013 Oct; 91(4):426-32. PubMed ID: 23846394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater.
    Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K
    Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems.
    Martins SE; Fillmann G; Lillicrap A; Thomas KV
    Biofouling; 2018 Jan; 34(1):34-52. PubMed ID: 29250978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis.
    Marcheselli M; Azzoni P; Mauri M
    Aquat Toxicol; 2011 Mar; 102(1-2):39-47. PubMed ID: 21371611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic ecological risk assessment of DDTs in the Bohai Bay based on a food web bioaccumulation model.
    Wang B; Yu G; Huang J; Wang T; Hu H
    Sci Total Environ; 2011 Jan; 409(3):495-502. PubMed ID: 21075423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern.
    Chen L; Lam JCW
    J Environ Sci (China); 2017 Nov; 61():68-79. PubMed ID: 29191317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of polar and temperate marine organisms to oil components.
    de Hoop L; Schipper AM; Leuven RS; Huijbregts MA; Olsen GH; Smit MG; Hendriks AJ
    Environ Sci Technol; 2011 Oct; 45(20):9017-23. PubMed ID: 21902216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of selected organo-nitrogen herbicides in South Florida canals: exposure and risk assessments.
    Wilson PC; Boman BJ
    Sci Total Environ; 2011 Dec; 412-413():119-26. PubMed ID: 22035558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans.
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its estimated degradation products using capillary zone electrophoresis.
    Fukushi K; Yakushiji Y; Okamura H; Hashimoto Y; Saito K
    J Chromatogr A; 2010 Apr; 1217(14):2187-90. PubMed ID: 20189577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina.
    Lavtizar V; Kimura D; Asaoka S; Okamura H
    Ecotoxicol Environ Saf; 2018 Jan; 147():132-138. PubMed ID: 28841528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China.
    Zhang R; Tang J; Li J; Cheng Z; Chaemfa C; Liu D; Zheng Q; Song M; Luo C; Zhang G
    Sci Total Environ; 2013 Apr; 450-451():197-204. PubMed ID: 23474265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates.
    Oliveira IB; Beiras R; Thomas KV; Suter MJ; Barroso CM
    Ecotoxicology; 2014 Sep; 23(7):1336-44. PubMed ID: 24994544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.