These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23044351)

  • 1. Effects of monorhamnolipid and dirhamnolipid on sorption and desorption of triclosan in sediment-water system.
    Zhang X; Guo Q; Hu Y; Lin H
    Chemosphere; 2013 Jan; 90(2):581-7. PubMed ID: 23044351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: Effects of pH, ionic strength, and DOM.
    Wu W; Hu Y; Guo Q; Yan J; Chen Y; Cheng J
    J Hazard Mater; 2015 Oct; 297():59-65. PubMed ID: 25938643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of triclosan onto sediments and its distribution behavior in sediment-water-rhamnolipid systems.
    Lin H; Hu YY; Zhang XY; Guo YP; Chen GR
    Environ Toxicol Chem; 2011 Nov; 30(11):2416-22. PubMed ID: 21823162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants.
    Guo YP; Hu YY; Lin H; Ou XL
    J Hazard Mater; 2018 Feb; 344():707-715. PubMed ID: 29154096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system.
    Chen Y; Hu Y; Guo Q; Yan J; Wu W
    Chemosphere; 2016 Sep; 159():465-472. PubMed ID: 27341150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sediment properties on the sorption of C12-2-LAS in marine and estuarine sediments.
    Rico-Rico A; Temara A; Behrends T; Hermens JL
    Environ Pollut; 2009 Feb; 157(2):377-83. PubMed ID: 19022541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation.
    Meis S; Spears BM; Maberly SC; O'Malley MB; Perkins RG
    J Environ Manage; 2012 Jan; 93(1):185-93. PubMed ID: 22054585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the sorption of tetracycline onto clays and marine sediment from seawater.
    Wang J; Hu J; Zhang S
    J Colloid Interface Sci; 2010 Sep; 349(2):578-82. PubMed ID: 20580373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and desorption behavior of copper ions on Na-montmorillonite: effect of rhamnolipids and pH.
    Ozdemir G; Yapar S
    J Hazard Mater; 2009 Jul; 166(2-3):1307-13. PubMed ID: 19178999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary.
    Wilson B; Chen RF; Cantwell M; Gontz A; Zhu J; Olsen CR
    Mar Pollut Bull; 2009; 59(4-7):207-12. PubMed ID: 19559448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwich Bay, Rhode Island, USA.
    Katz DR; Cantwell MG; Sullivan JC; Perron MM; Burgess RM; Ho KT; Charpentier MA
    Sci Total Environ; 2013 Jan; 443():123-33. PubMed ID: 23183224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenanthrene partitioning in sediment-surfactant-fresh/saline water systems.
    Sun H; Wu W; Wang L
    Environ Pollut; 2009; 157(8-9):2520-8. PubMed ID: 19321244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil.
    Ochoa-Loza FJ; Noordman WH; Jannsen DB; Brusseau ML; Maier RM
    Chemosphere; 2007 Jan; 66(9):1634-42. PubMed ID: 16965801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research and application of in-situ control technology for sediment rehabilitation in eutrophic water bodies.
    Liu B; Liu X; Yang J; Garman DE; Zhang K; Zhang H
    Water Sci Technol; 2012; 65(7):1190-9. PubMed ID: 22437015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing adsorption and desorption of trimethoprim on marine sediments: mechanisms and kinetics.
    Li J; Zhang H
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21929-21937. PubMed ID: 28780692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides.
    Couto N; Ferreira AR; Guedes P; Mateus E; Ribeiro AB
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35928-35935. PubMed ID: 30191527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of domoic acid to marine sediments and clays.
    Burns JM; Ferry JL
    J Environ Monit; 2007 Dec; 9(12):1373-7. PubMed ID: 18049776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective removal and preconcentration of triclosan using a water-compatible imprinted nano-magnetic chitosan particles.
    Chen Y; Lei X; Dou R; Chen Y; Hu Y; Zhang Z
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18640-18650. PubMed ID: 28647880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.