These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23044351)

  • 41. Quantifying the environmental impact of As and Cr in stabilized/solidified materials.
    Dalmacija M; Prica M; Dalmacija B; Roncevic S; Klasnja M
    Sci Total Environ; 2011 Dec; 412-413():366-74. PubMed ID: 22044582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation.
    Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA
    Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of aging and sediment composition on hexachlorobenzene desorption resistance compared to oral bioavailability in rats.
    Chai Y; Davis JW; Saghir SA; Qiu X; Budinsky RA; Bartels MJ
    Chemosphere; 2008 Jun; 72(3):432-41. PubMed ID: 18396312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.
    Wang X; Li Y
    J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sorption and degradation of triclosan in sediments and its effect on microbes.
    Huang X; Wu C; Hu H; Yu Y; Liu J
    Ecotoxicol Environ Saf; 2015 Jun; 116():76-83. PubMed ID: 25770654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Triclosan - an antibacterial compound in water, sediment and fish of River Gomti, India.
    Nag SK; Das Sarkar S; Manna SK
    Int J Environ Health Res; 2018 Oct; 28(5):461-470. PubMed ID: 29925273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues.
    Lyndall J; Fuchsman P; Bock M; Barber T; Lauren D; Leigh K; Perruchon E; Capdevielle M
    Integr Environ Assess Manag; 2010 Jul; 6(3):419-40. PubMed ID: 20821705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Geochemical interactions between process-affected water from oil sands tailings ponds and North Alberta surficial sediments.
    Holden AA; Donahue RB; Ulrich AC
    J Contam Hydrol; 2011 Jan; 119(1-4):55-68. PubMed ID: 20980071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of aging on the digestive solubilization of Cu from sediments.
    Zhong H; Kraemer L; Evans D
    Environ Pollut; 2012 May; 164():195-203. PubMed ID: 22366348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests.
    Josefsson S; Schaanning M; Samuelsson GS; Gunnarsson JS; Olofsson I; Eek E; Wiberg K
    Environ Sci Technol; 2012 Mar; 46(6):3343-51. PubMed ID: 22339559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints.
    Pusceddu FH; Choueri RB; Pereira CDS; Cortez FS; Santos DRA; Moreno BB; Santos AR; Rogero JR; Cesar A
    Environ Pollut; 2018 Jan; 232():274-283. PubMed ID: 28958726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sorption of the cyanobacterial toxins cylindrospermopsin and anatoxin-a to sediments.
    Klitzke S; Beusch C; Fastner J
    Water Res; 2011 Jan; 45(3):1338-46. PubMed ID: 21112603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sorption of imidazolium-based ionic liquids to aquatic sediments.
    Beaulieu JJ; Tank JL; Kopacz M
    Chemosphere; 2008 Jan; 70(7):1320-8. PubMed ID: 17850845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment.
    Zhao JL; Ying GG; Liu YS; Chen F; Yang JF; Wang L
    J Hazard Mater; 2010 Jul; 179(1-3):215-22. PubMed ID: 20303651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems.
    Stasinakis AS; Petalas AV; Mamais D; Thomaidis NS; Gatidou G; Lekkas TD
    Chemosphere; 2007 Jun; 68(2):375-81. PubMed ID: 17337032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accumulation and Risk of Triclosan in Surface Sediments Near the Outfalls of Municipal Wastewater Treatment Plants.
    Chen L; Wang Z; Jing Z; Wang Z; Cao S; Yu T
    Bull Environ Contam Toxicol; 2015 Oct; 95(4):525-9. PubMed ID: 26271613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of irreversible sorption of phthalate acid esters on their sediment quality criteria.
    Xia X; Zhang J; Sha Y; Li J
    J Environ Monit; 2012 Jan; 14(1):258-65. PubMed ID: 22130513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments.
    Zhang J; Séquaris JM; Narres HD; Vereecken H; Klumpp E
    Chemosphere; 2010 Sep; 80(11):1321-7. PubMed ID: 20619874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.