These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23044351)

  • 61. Sorption of p-nitrophenol onto sediment in the presence of cetylpyridinium chloride and Pb(NO3)2: influence of pH.
    Huang W; Yao C; Jin S; Ying S; Shen X
    J Hazard Mater; 2008 Jun; 155(1-2):225-9. PubMed ID: 18215459
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ex situ remediation of contaminated sediments using mineral additives: assessment of pollutant bioavailability with the Microtox solid phase test.
    Mamindy-Pajany Y; Geret F; Roméo M; Hurel C; Marmier N
    Chemosphere; 2012 Mar; 86(11):1112-6. PubMed ID: 22197312
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants.
    Ying GG; Kookana RS
    Environ Int; 2007 Feb; 33(2):199-205. PubMed ID: 17055058
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration.
    de Vicente I; Jensen HS; Andersen FØ
    Sci Total Environ; 2008 Jan; 389(1):29-36. PubMed ID: 17900664
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Copper sorption and desorption by loess in water-sediment systems].
    Zhang L; Ni J; Sun W; Zhao R
    Huan Jing Ke Xue; 2003 May; 24(3):79-84. PubMed ID: 12916208
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of organic matter and clay content in sediments for bioavailability of pyrene.
    Spasojević J; Maletić S; Rončević S; Grgić M; Krčmar D; Varga N; Dalmacija B
    Water Sci Technol; 2018 Jan; 77(1-2):439-447. PubMed ID: 29377828
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms.
    Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adsorption of tetracyclines on marine sediment during organic matter diagenesis.
    Fei YH; Li XY
    Water Sci Technol; 2013; 67(11):2616-21. PubMed ID: 23752397
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments.
    Singer H; Müller S; Tixier C; Pillonel L
    Environ Sci Technol; 2002 Dec; 36(23):4998-5004. PubMed ID: 12523412
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Competitive and cooperative sorption between triclosan and methyl triclosan on microplastics and soil.
    Chen X; Liang J; Bao L; Gu X; Zha S; Chen X
    Environ Res; 2022 Sep; 212(Pt D):113548. PubMed ID: 35613630
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment.
    Sangster JL; Oke H; Zhang Y; Bartelt-Hunt SL
    J Hazard Mater; 2015 Dec; 299():112-21. PubMed ID: 26094244
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degradation of rizazole in water-sediment systems.
    Zhang C; Zhao H; Ping L; Cai X; Wu M; He H; Zhang C; Zhu Y; Li Z
    J Environ Sci Health B; 2013; 48(5):319-23. PubMed ID: 23431969
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Efficient removal of triclosan via peroxymonosulfate activated by a ppb level dosage of Co(II) in water: Reaction kinetics, mechanisms and detoxification.
    Peng J; Zhang C; Zhang Y; Shao S; Wang P; Liu G; Dong H; Liu D; Shi J; Cao Z; Liu H; Gao S
    Ecotoxicol Environ Saf; 2020 Jul; 198():110676. PubMed ID: 32361496
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparison of adsorption and desorption of triclosan between microplastics and soil particles.
    Chen X; Gu X; Bao L; Ma S; Mu Y
    Chemosphere; 2021 Jan; 263():127947. PubMed ID: 32822930
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic.
    Li Y; Li M; Li Z; Yang L; Liu X
    Chemosphere; 2019 Sep; 231():308-314. PubMed ID: 31132537
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Desorption kinetics of 1,2,4,5-tetrachlorobenzene in sediments].
    Shu YH; Huang XR; Jia XS
    Huan Jing Ke Xue; 2009 Mar; 30(3):743-7. PubMed ID: 19432321
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Substance flow analysis and assessment of environmental exposure potential for triclosan in mainland China.
    Huang CL; Ma HW; Yu CP
    Sci Total Environ; 2014 Nov; 499():265-75. PubMed ID: 25194904
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sorption of pharmaceuticals and personal care products to polyethylene debris.
    Wu C; Zhang K; Huang X; Liu J
    Environ Sci Pollut Res Int; 2016 May; 23(9):8819-26. PubMed ID: 26810664
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Random Forest approach to predict the spatial distribution of sediment pollution in an estuarine system.
    Walsh ES; Kreakie BJ; Cantwell MG; Nacci D
    PLoS One; 2017; 12(7):e0179473. PubMed ID: 28738089
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Contamination and spatial distribution of parabens, their metabolites and antimicrobials in sediment from Korean coastal waters.
    Lee JW; Lee HK; Moon HB
    Ecotoxicol Environ Saf; 2019 Sep; 180():185-191. PubMed ID: 31082583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.