These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23044351)

  • 81. Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms.
    Peng FJ; Diepens NJ; Pan CG; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Environ Pollut; 2019 May; 248():676-683. PubMed ID: 30849585
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Effects of Pb(NO3)2 and cetylpyridinium chloride on sorption of p-nitrophenol by sediment].
    Ying ST; Huang WF; Tian LY; Shen XY
    Huan Jing Ke Xue; 2006 Jul; 27(7):1373-6. PubMed ID: 16881312
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm.
    Peng FJ; Ying GG; Pan CG; Selck H; Salvito D; Van den Brink PJ
    Environ Sci Technol; 2018 Aug; 52(15):8390-8398. PubMed ID: 30010330
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Basin-scale emission and multimedia fate of triclosan in whole China.
    Zhang QQ; Ying GG; Chen ZF; Zhao JL; Liu YS
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10130-43. PubMed ID: 25854205
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of suspended uncontaminated sediment on persistent organic pollutant release.
    Handlin M; Molina A; James N; McConville M; Dunnivant F
    Environ Toxicol Chem; 2014 Feb; 33(2):375-81. PubMed ID: 24130007
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Simultaneous adsorption and degradation of triclosan by Ginkgo biloba L. stabilized Fe/Co bimetallic nanoparticles.
    Gao JF; Wu ZL; Duan WJ; Zhang WZ
    Sci Total Environ; 2019 Apr; 662():978-989. PubMed ID: 30795484
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sewer sediment-bound antibiotics as a potential environmental risk: Adsorption and desorption affinity of 14 antibiotics and one metabolite.
    Kaeseberg T; Zhang J; Schubert S; Oertel R; Siedel H; Krebs P
    Environ Pollut; 2018 Aug; 239():638-647. PubMed ID: 29709835
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Sorption and photodegradation processes govern distribution and fate of sulfamethazine in freshwater-sediment microcosms.
    Carstens KL; Gross AD; Moorman TB; Coats JR
    Environ Sci Technol; 2013 Oct; 47(19):10877-83. PubMed ID: 23977992
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rhamnolipid stabilized nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment.
    Wan J; Zeng G; Huang D; Hu L; Xu P; Huang C; Deng R; Xue W; Lai C; Zhou C; Zheng K; Ren X; Gong X
    J Hazard Mater; 2018 Feb; 343():332-339. PubMed ID: 28992571
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Microplastics and organics - A comparative study of sorption of triclosan and malachite green onto polyethylene.
    Çiftçi G; Türkeli ÜD; Özen EY; Özdemir M; Sanin FD; İmamoğlu İ
    Water Sci Technol; 2023 Mar; 87(5):1072-1081. PubMed ID: 36919734
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of porous clay-based composites for the sorption of lead from water.
    Ake CL; Mayura K; Huebner H; Bratton GR; Phillips TD
    J Toxicol Environ Health A; 2001 Jul; 63(6):459-75. PubMed ID: 11482800
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Ionic liquid assisted electrospun cellulose acetate fibers for aqueous removal of triclosan.
    Zhang G; Sun M; Liu Y; Liu H; Qu J; Li J
    Langmuir; 2015 Feb; 31(5):1820-7. PubMed ID: 25595432
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.
    Xin L; Sun Y; Feng J; Wang J; He D
    Chemosphere; 2016 Feb; 144():855-63. PubMed ID: 26421625
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF.
    Liu Z; Yu M; Zeng G; Li M; Zhang J; Zhong H; Liu Y; Shao B; Li Z; Wang Z; Liu G; Yang X
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1230-1240. PubMed ID: 27770324
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan.
    Wang L; Xu S; Pan B; Yang Y
    Environ Sci Process Impacts; 2017 Apr; 19(4):499-506. PubMed ID: 28290573
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Pyrolysis of Triclosan and Its Chlorinated Derivatives.
    Narimani M; da Silva G
    J Phys Chem A; 2020 Oct; 124(39):8050-8056. PubMed ID: 32875798
    [TBL] [Abstract][Full Text] [Related]  

  • 97. DNA-based stable isotope probing identifies triclosan degraders in nitrification systems under different surfactants.
    Jia JX; Gao JF; Dai HH; Zhang WZ; Zhang D; Wang ZQ
    Bioresour Technol; 2020 Apr; 302():122815. PubMed ID: 32000131
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4.
    Tian H; Ma YJ; Li WY; Wang JW
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8963-8975. PubMed ID: 29332277
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Interparticle migration of metal cations in stream sediments as a factor in toxics transport.
    Jackman AP; Kennedy VC; Bhatia N
    J Hazard Mater; 2001 Mar; 82(1):27-41. PubMed ID: 11165059
    [TBL] [Abstract][Full Text] [Related]  

  • 100. [Adsorption characteristics of typical PPCPs onto river sediments and its influencing factors].
    Wang K; Li KZ; Zhou YY; Liu ZH; Xue G; Gao P
    Huan Jing Ke Xue; 2015 Mar; 36(3):847-54. PubMed ID: 25929050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.