These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23044392)

  • 21. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.
    Percak-Dennett EM; Beard BL; Xu H; Konishi H; Johnson CM; Roden EE
    Geobiology; 2011 May; 9(3):205-20. PubMed ID: 21504536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioenergetic challenges of microbial iron metabolisms.
    Bird LJ; Bonnefoy V; Newman DK
    Trends Microbiol; 2011 Jul; 19(7):330-40. PubMed ID: 21664821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoferrotrophs thrive in an Archean Ocean analogue.
    Crowe SA; Jones C; Katsev S; Magen C; O'Neill AH; Sturm A; Canfield DE; Haffner GD; Mucci A; Sundby B; Fowle DA
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15938-43. PubMed ID: 18838679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The iron-oxidizing proteobacteria.
    Hedrich S; Schlömann M; Johnson DB
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1551-1564. PubMed ID: 21511765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional diversity of bacteria in a ferruginous hydrothermal sediment.
    Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR
    ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enrichment and isolation of iron-oxidizing bacteria at neutral pH.
    Emerson D; Floyd MM
    Methods Enzymol; 2005; 397():112-23. PubMed ID: 16260287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.
    Barco RA; Emerson D; Sylvan JB; Orcutt BN; Jacobson Meyers ME; Ramírez GA; Zhong JD; Edwards KJ
    Appl Environ Microbiol; 2015 Sep; 81(17):5927-37. PubMed ID: 26092463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake.
    Walter XA; Picazo A; Miracle MR; Vicente E; Camacho A; Aragno M; Zopfi J
    Front Microbiol; 2014; 5():713. PubMed ID: 25538702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation.
    Hohmann C; Winkler E; Morin G; Kappler A
    Environ Sci Technol; 2010 Jan; 44(1):94-101. PubMed ID: 20039738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions.
    Carlson HK; Clark IC; Blazewicz SJ; Iavarone AT; Coates JD
    J Bacteriol; 2013 Jul; 195(14):3260-8. PubMed ID: 23687275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation.
    Klueglein N; Kappler A
    Geobiology; 2013 Mar; 11(2):180-90. PubMed ID: 23205609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations.
    Simon J; Klotz MG
    Biochim Biophys Acta; 2013 Feb; 1827(2):114-35. PubMed ID: 22842521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.
    Grein F; Ramos AR; Venceslau SS; Pereira IA
    Biochim Biophys Acta; 2013 Feb; 1827(2):145-60. PubMed ID: 22982583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microaerophilic, Fe(II)-dependent growth and Fe(II) oxidation by a Dechlorospirillum species.
    Picardal FW; Zaybak Z; Chakraborty A; Schieber J; Szewzyk U
    FEMS Microbiol Lett; 2011 Jun; 319(1):51-7. PubMed ID: 21410510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligo-heterotrophic Activity of
    Jain A; Bonis BM; Gralnick JA
    Appl Environ Microbiol; 2021 Nov; 87(24):e0136721. PubMed ID: 34586913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon, iron and sulfur metabolism in acidophilic micro-organisms.
    Barrie Johnson D; Hallberg KB
    Adv Microb Physiol; 2009; 54():201-55. PubMed ID: 18929069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.
    Akerman NH; Price RE; Pichler T; Amend JP
    Geobiology; 2011 Sep; 9(5):436-45. PubMed ID: 21884364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.
    Maisch M; Wu W; Kappler A; Swanner ED
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.