These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23044399)

  • 1. Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species.
    Ukuwela KD; de Silva A; Mumpuni ; Fry BG; Lee MS; Sanders KL
    Mol Phylogenet Evol; 2013 Jan; 66(1):262-9. PubMed ID: 23044399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes.
    Sanders KL; Rasmussen AR; Mumpuni ; Elmberg J; de Silva A; Guinea ML; Lee MS
    Mol Ecol; 2013 May; 22(10):2742-59. PubMed ID: 23506038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhydrina schistosa (Elapidae: Hydrophiinae) the most dangerous sea snake in Sri Lanka: three case studies of severe envenoming.
    Kularatne SA; Hettiarachchi R; Dalpathadu J; Mendis AS; Appuhamy PD; Zoysa HD; Maduwage K; Weerasinghe VS; de Silva A
    Toxicon; 2014 Jan; 77():78-86. PubMed ID: 24239658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Lee MS; Mumpuni ; Bertozzi T; Rasmussen AR
    Mol Phylogenet Evol; 2013 Mar; 66(3):575-91. PubMed ID: 23026811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.
    Sanders KL; Lee MS; Leys R; Foster R; Keogh JS
    J Evol Biol; 2008 May; 21(3):682-95. PubMed ID: 18384538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (subfamily Hydrophiinae) based on cytochrome b and 16S rRNA sequences.
    Keogh JS; Shine R; Donnellan S
    Mol Phylogenet Evol; 1998 Aug; 10(1):67-81. PubMed ID: 9751918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncovering cryptic diversity in Aspidomorphus (Serpentes: Elapidae): evidence from mitochondrial and nuclear markers.
    Metzger GA; Kraus F; Allison A; Parkinson CL
    Mol Phylogenet Evol; 2010 Feb; 54(2):405-16. PubMed ID: 19647085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plio-pleistocene diversification and connectivity between mainland and Tasmanian populations of Australian snakes (Drysdalia, Elapidae, Serpentes).
    Dubey S; Keogh JS; Shine R
    Mol Phylogenet Evol; 2010 Sep; 56(3):1119-25. PubMed ID: 20430104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent innovation in the evolution of paddle-shaped tails in viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Rasmussen AR; Elmberg J
    Integr Comp Biol; 2012 Aug; 52(2):311-20. PubMed ID: 22634358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.
    Keogh JS; Scott IA; Hayes C
    Evolution; 2005 Jan; 59(1):226-33. PubMed ID: 15792242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters.
    Tan CH; Tan NH; Tan KY; Kwong KO
    Toxins (Basel); 2015 Feb; 7(2):572-81. PubMed ID: 25690691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling ecological innovation and speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini).
    Sanders KL; Mumpuni ; Lee MS
    J Evol Biol; 2010 Dec; 23(12):2685-93. PubMed ID: 21077974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka.
    Pyron RA; Kandambi HK; Hendry CR; Pushpamal V; Burbrink FT; Somaweera R
    Mol Phylogenet Evol; 2013 Mar; 66(3):969-78. PubMed ID: 23261713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecules and morphology reveal overlooked populations of two presumed extinct Australian sea snakes (Aipysurus: Hydrophiinae).
    Sanders KL; Schroeder T; Guinea ML; Rasmussen AR
    PLoS One; 2015; 10(2):e0115679. PubMed ID: 25671608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely low nerve growth facior (NGF) activity of sea snake (Hydrophiidae) venoms.
    Mariam K; Tu AT
    J Nat Toxins; 2002 Dec; 11(4):393-8. PubMed ID: 12503884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms.
    Chetty N; Du A; Hodgson WC; Winkel K; Fry BG
    Toxicon; 2004 Aug; 44(2):193-200. PubMed ID: 15246769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary insights into the phylogeography of the yellow-bellied sea snake, Pelamis platurus.
    Sheehy CM; Solórzano A; Pfaller JB; Lillywhite HB
    Integr Comp Biol; 2012 Aug; 52(2):321-30. PubMed ID: 22659201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes).
    Maddock ST; Childerstone A; Fry BG; Williams DJ; Barlow A; Wüster W
    Mol Phylogenet Evol; 2017 Feb; 107():48-55. PubMed ID: 27637992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes: Colubridae).
    Pyron RA; Burbrink FT
    Mol Phylogenet Evol; 2009 Aug; 52(2):524-9. PubMed ID: 19236930
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.