BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23045335)

  • 1. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure.
    Scallan JP; Wolpers JH; Davis MJ
    J Physiol; 2013 Jan; 591(2):443-59. PubMed ID: 23045335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload.
    Davis MJ; Scallan JP; Wolpers JH; Muthuchamy M; Gashev AA; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H795-808. PubMed ID: 22886407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myogenic constriction and dilation of isolated lymphatic vessels.
    Davis MJ; Davis AM; Ku CW; Gashev AA
    Am J Physiol Heart Circ Physiol; 2009 Feb; 296(2):H293-302. PubMed ID: 19028793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.
    Dongaonkar RM; Nguyen TL; Quick CM; Hardy J; Laine GA; Wilson E; Stewart RH
    Am J Physiol Heart Circ Physiol; 2013 Jul; 305(2):H203-10. PubMed ID: 23666672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile stimuli in collecting lymph vessels.
    Hargens AR; Zweifach BW
    Am J Physiol; 1977 Jul; 233(1):H57-65. PubMed ID: 879337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of cytosolic Ca2+ in isolated contractile lymphatics.
    Souza-Smith FM; Kurtz KM; Breslin JW
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22214883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphatic pumping: mechanics, mechanisms and malfunction.
    Scallan JP; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    J Physiol; 2016 Oct; 594(20):5749-5768. PubMed ID: 27219461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages.
    Bridenbaugh EA; Nizamutdinova IT; Jupiter D; Nagai T; Thangaswamy S; Chatterjee V; Gashev AA
    Lymphat Res Biol; 2013 Mar; 11(1):35-42. PubMed ID: 23531183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive pressure-diameter relationship and structural composition of rat mesenteric lymphangions.
    Rahbar E; Weimer J; Gibbs H; Yeh AT; Bertram CD; Davis MJ; Hill MA; Zawieja DC; Moore JE
    Lymphat Res Biol; 2012 Dec; 10(4):152-63. PubMed ID: 23145980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow.
    Quick CM; Ngo BL; Venugopal AM; Stewart RH
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H662-8. PubMed ID: 19122167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial stretch regulates rat tail collecting lymphatic vessel contractions.
    Razavi MS; Leonard-Duke J; Hardie B; Dixon JB; Gleason RL
    Sci Rep; 2020 Apr; 10(1):5918. PubMed ID: 32246026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels.
    Jo M; Trujillo AN; Yang Y; Breslin JW
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H561-H574. PubMed ID: 31274355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch.
    Davis MJ; Davis AM; Lane MM; Ku CW; Gashev AA
    J Physiol; 2009 Jan; 587(1):165-82. PubMed ID: 19001046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.