BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23045345)

  • 1. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.
    de Paoli FV; Broch-Lips M; Pedersen TH; Nielsen OB
    J Physiol; 2013 Jan; 591(2):531-45. PubMed ID: 23045345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating.
    Riisager A; de Paoli FV; Yu WP; Pedersen TH; Chen TY; Nielsen OB
    J Physiol; 2016 Jun; 594(12):3391-406. PubMed ID: 26857341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance.
    de Paoli FV; Ørtenblad N; Pedersen TH; Jørgensen R; Nielsen OB
    J Physiol; 2010 Dec; 588(Pt 23):4785-94. PubMed ID: 20876199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers.
    Pedersen TH; de Paoli FV; Flatman JA; Nielsen OB
    J Gen Physiol; 2009 Oct; 134(4):309-22. PubMed ID: 19786584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle.
    van Emst MG; Klarenbeek S; Schot A; Plomp JJ; Doornenbal A; Everts ME
    J Physiol; 2004 Nov; 561(Pt 1):169-81. PubMed ID: 15345748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disuse of rat muscle in vivo reduces protein kinase C activity controlling the sarcolemma chloride conductance.
    Pierno S; Desaphy JF; Liantonio A; De Luca A; Zarrilli A; Mastrofrancesco L; Procino G; Valenti G; Conte Camerino D
    J Physiol; 2007 Nov; 584(Pt 3):983-95. PubMed ID: 17855757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased excitability of acidified skeletal muscle: role of chloride conductance.
    Pedersen TH; de Paoli F; Nielsen OB
    J Gen Physiol; 2005 Feb; 125(2):237-46. PubMed ID: 15684096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression.
    Pierno S; Camerino GM; Cippone V; Rolland JF; Desaphy JF; De Luca A; Liantonio A; Bianco G; Kunic JD; George AL; Conte Camerino D
    Br J Pharmacol; 2009 Apr; 156(8):1206-15. PubMed ID: 19220292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological block of chloride channels of developing rat skeletal muscle affects the differentiation of specific contractile properties.
    De Luca A; Conte Camerino D; Connold A; Vrbovà G
    Pflugers Arch; 1990 Apr; 416(1-2):17-21. PubMed ID: 2162030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride Channels Take Center Stage in Acute Regulation of Excitability in Skeletal Muscle: Implications for Fatigue.
    Bækgaard Nielsen O; de Paoli FV; Riisager A; Pedersen TH
    Physiology (Bethesda); 2017 Nov; 32(6):425-434. PubMed ID: 29021362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle.
    Pedersen TH; Macdonald WA; de Paoli FV; Gurung IS; Nielsen OB
    J Gen Physiol; 2009 Oct; 134(4):323-37. PubMed ID: 19786585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.
    Broch-Lips M; de Paoli F; Pedersen TH; Overgaard K; Nielsen OB
    J Appl Physiol (1985); 2011 Jul; 111(1):212-20. PubMed ID: 21551010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Na+,K+-pumps and transmembrane Na+,K+-distribution in muscle function. The FEPS lecture - Bratislava 2007.
    Clausen T
    Acta Physiol (Oxf); 2008 Mar; 192(3):339-49. PubMed ID: 17988242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers.
    Pierno S; De Luca A; Camerino C; Huxtable RJ; Camerino DC
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1183-90. PubMed ID: 9732377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers.
    DiFranco M; Herrera A; Vergara JL
    J Gen Physiol; 2011 Jan; 137(1):21-41. PubMed ID: 21149546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.