These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 23045530)
1. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. Hargreaves VV; Putnam CD; Kolodner RD J Biol Chem; 2012 Nov; 287(49):41232-44. PubMed ID: 23045530 [TBL] [Abstract][Full Text] [Related]
2. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair. Graham WJ; Putnam CD; Kolodner RD J Biol Chem; 2018 Nov; 293(47):18055-18070. PubMed ID: 30237169 [TBL] [Abstract][Full Text] [Related]
3. Interaction between the Msh2 and Msh6 nucleotide-binding sites in the Saccharomyces cerevisiae Msh2-Msh6 complex. Hargreaves VV; Shell SS; Mazur DJ; Hess MT; Kolodner RD J Biol Chem; 2010 Mar; 285(12):9301-10. PubMed ID: 20089866 [TBL] [Abstract][Full Text] [Related]
4. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. Srivatsan A; Bowen N; Kolodner RD J Biol Chem; 2014 Mar; 289(13):9352-64. PubMed ID: 24550389 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mazur DJ; Mendillo ML; Kolodner RD Mol Cell; 2006 Apr; 22(1):39-49. PubMed ID: 16600868 [TBL] [Abstract][Full Text] [Related]
6. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein. Antony E; Khubchandani S; Chen S; Hingorani MM DNA Repair (Amst); 2006 Feb; 5(2):153-62. PubMed ID: 16214425 [TBL] [Abstract][Full Text] [Related]
7. Msh2 separation of function mutations confer defects in the initiation steps of mismatch repair. Kijas AW; Studamire B; Alani E J Mol Biol; 2003 Aug; 331(1):123-38. PubMed ID: 12875840 [TBL] [Abstract][Full Text] [Related]
8. Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair. DuPrie ML; Palacio T; Calil FA; Kolodner RD; Putnam CD DNA Repair (Amst); 2022 Nov; 119():103405. PubMed ID: 36122480 [TBL] [Abstract][Full Text] [Related]
9. Analysis of yeast MSH2-MSH6 suggests that the initiation of mismatch repair can be separated into discrete steps. Bowers J; Tran PT; Liskay RM; Alani E J Mol Biol; 2000 Sep; 302(2):327-38. PubMed ID: 10970737 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. Mendillo ML; Mazur DJ; Kolodner RD J Biol Chem; 2005 Jun; 280(23):22245-57. PubMed ID: 15811858 [TBL] [Abstract][Full Text] [Related]
11. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. Habraken Y; Sung P; Prakash L; Prakash S J Biol Chem; 1998 Apr; 273(16):9837-41. PubMed ID: 9545323 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis. Mukherjee S; Law SM; Feig M Biophys J; 2009 Mar; 96(5):1707-20. PubMed ID: 19254532 [TBL] [Abstract][Full Text] [Related]
13. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair. Plys AJ; Rogacheva MV; Greene EC; Alani E J Mol Biol; 2012 Sep; 422(2):192-203. PubMed ID: 22659005 [TBL] [Abstract][Full Text] [Related]
14. Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair. Antony E; Hingorani MM Biochemistry; 2003 Jul; 42(25):7682-93. PubMed ID: 12820877 [TBL] [Abstract][Full Text] [Related]
15. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Hombauer H; Campbell CS; Smith CE; Desai A; Kolodner RD Cell; 2011 Nov; 147(5):1040-53. PubMed ID: 22118461 [TBL] [Abstract][Full Text] [Related]
16. Prerecognition Diffusion Mechanism of Human DNA Mismatch Repair Proteins along DNA: Msh2-Msh3 versus Msh2-Msh6. Pal A; Greenblatt HM; Levy Y Biochemistry; 2020 Dec; 59(51):4822-4832. PubMed ID: 33319999 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. Marsischky GT; Kolodner RD J Biol Chem; 1999 Sep; 274(38):26668-82. PubMed ID: 10480869 [TBL] [Abstract][Full Text] [Related]
18. Biochemical basis for dominant mutations in the Saccharomyces cerevisiae MSH6 gene. Hess MT; Mendillo ML; Mazur DJ; Kolodner RD Proc Natl Acad Sci U S A; 2006 Jan; 103(3):558-63. PubMed ID: 16407100 [TBL] [Abstract][Full Text] [Related]
19. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D). Geng H; Sakato M; DeRocco V; Yamane K; Du C; Erie DA; Hingorani M; Hsieh P J Biol Chem; 2012 Mar; 287(13):9777-9791. PubMed ID: 22277660 [TBL] [Abstract][Full Text] [Related]
20. Application of stopped-flow kinetics methods to investigate the mechanism of action of a DNA repair protein. Biro FN; Zhai J; Doucette CW; Hingorani MM J Vis Exp; 2010 Mar; (37):. PubMed ID: 20357752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]