These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23045532)

  • 1. Low activation and fast inactivation of transducin in carp cones.
    Tachibanaki S; Yonetsu S; Fukaya S; Koshitani Y; Kawamura S
    J Biol Chem; 2012 Nov; 287(49):41186-94. PubMed ID: 23045532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones.
    Koshitani Y; Tachibanaki S; Kawamura S
    J Biol Chem; 2014 Jan; 289(5):2651-7. PubMed ID: 24344136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
    Tomizuka J; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Apr; 290(15):9399-411. PubMed ID: 25713141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical analysis of phototransduction reaction parameters in rods and cones.
    Takeda Y; Sato K; Hosoki Y; Tachibanaki S; Koike C; Amano A
    Sci Rep; 2022 Nov; 12(1):19529. PubMed ID: 36376413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
    Yamaoka H; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Oct; 290(40):24381-90. PubMed ID: 26286749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity.
    Mao W; Miyagishima KJ; Yao Y; Soreghan B; Sampath AP; Chen J
    J Biol Chem; 2013 Feb; 288(8):5257-67. PubMed ID: 23288843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S; Arinobu D; Shimauchi-Matsukawa Y; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9329-34. PubMed ID: 15958532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic basis for the failure of cone transducin to translocate: why cones are never blinded by light.
    Lobanova ES; Herrmann R; Finkelstein S; Reidel B; Skiba NP; Deng WT; Jo R; Weiss ER; Hauswirth WW; Arshavsky VY
    J Neurosci; 2010 May; 30(20):6815-24. PubMed ID: 20484624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A visual pigment expressed in both rod and cone photoreceptors.
    Ma J; Znoiko S; Othersen KL; Ryan JC; Das J; Isayama T; Kono M; Oprian DD; Corson DW; Cornwall MC; Cameron DA; Harosi FI; Makino CL; Crouch RK
    Neuron; 2001 Nov; 32(3):451-61. PubMed ID: 11709156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S; Shimauchi-Matsukawa Y; Arinobu D; Kawamura S
    Photochem Photobiol; 2007; 83(1):19-26. PubMed ID: 16706600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments.
    Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y
    J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transducin activation state controls its light-dependent translocation in rod photoreceptors.
    Kerov V; Chen D; Moussaif M; Chen YJ; Chen CK; Artemyev NO
    J Biol Chem; 2005 Dec; 280(49):41069-76. PubMed ID: 16207703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiencies of activation of transducin by cone and rod visual pigments.
    Imamoto Y; Seki I; Yamashita T; Shichida Y
    Biochemistry; 2013 Apr; 52(17):3010-8. PubMed ID: 23570417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototransduction in cones as examined in excised membrane patch.
    Watanabe S; Murakami M
    Jpn J Physiol; 1992; 42(2):309-20. PubMed ID: 1331581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay.
    Chen CK; Woodruff ML; Chen FS; Shim H; Cilluffo MC; Fain GL
    J Physiol; 2010 Sep; 588(Pt 17):3231-41. PubMed ID: 20603337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differentially expressed genes in carp rods and cones.
    Shimauchi-Matsukawa Y; Aman Y; Tachibanaki S; Kawamura S
    Mol Vis; 2008 Feb; 14():358-69. PubMed ID: 18334952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.