These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 23045610)
1. Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. Kosmala A; Perlikowski D; Pawłowicz I; Rapacz M J Exp Bot; 2012 Oct; 63(17):6161-72. PubMed ID: 23045610 [TBL] [Abstract][Full Text] [Related]
2. Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. Perlikowski D; Kosmala A; Rapacz M; Kościelniak J; Pawłowicz I; Zwierzykowski Z Plant Biol (Stuttg); 2014 Mar; 16(2):385-94. PubMed ID: 23879319 [TBL] [Abstract][Full Text] [Related]
3. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Kosmala A; Bocian A; Rapacz M; Jurczyk B; Zwierzykowski Z J Exp Bot; 2009; 60(12):3595-609. PubMed ID: 19553368 [TBL] [Abstract][Full Text] [Related]
4. Two Lechowicz K; Pawłowicz I; Perlikowski D; Arasimowicz-Jelonek M; Majka J; Augustyniak A; Rapacz M; Kosmala A Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32365894 [TBL] [Abstract][Full Text] [Related]
5. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea. Pawłowicz I; Waśkiewicz A; Perlikowski D; Rapacz M; Ratajczak D; Kosmala A Photosynth Res; 2018 Sep; 137(3):475-492. PubMed ID: 29881986 [TBL] [Abstract][Full Text] [Related]
6. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. Pawłowicz I; Rapacz M; Perlikowski D; Gondek K; Kosmala A J Appl Genet; 2017 Nov; 58(4):421-435. PubMed ID: 28779288 [TBL] [Abstract][Full Text] [Related]
7. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Xiao X; Yang F; Zhang S; Korpelainen H; Li C Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505 [TBL] [Abstract][Full Text] [Related]
8. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Kottapalli KR; Rakwal R; Shibato J; Burow G; Tissue D; Burke J; Puppala N; Burow M; Payton P Plant Cell Environ; 2009 Apr; 32(4):380-407. PubMed ID: 19143990 [TBL] [Abstract][Full Text] [Related]
9. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. Liu JX; Bennett J Mol Plant; 2011 Jan; 4(1):59-69. PubMed ID: 20643753 [TBL] [Abstract][Full Text] [Related]
10. Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lechowicz K; Pawłowicz I; Perlikowski D; Arasimowicz-Jelonek M; Blicharz S; Skirycz A; Augustyniak A; Malinowski R; Rapacz M; Kosmala A Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32781659 [No Abstract] [Full Text] [Related]
11. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon. Zhao Y; Du H; Wang Z; Huang B Physiol Plant; 2011 Jan; 141(1):40-55. PubMed ID: 21029106 [TBL] [Abstract][Full Text] [Related]
12. Proteome response of Elymus elongatum to severe water stress and recovery. Gazanchian A; Hajheidari M; Sima NK; Salekdeh GH J Exp Bot; 2007; 58(2):291-300. PubMed ID: 17210992 [TBL] [Abstract][Full Text] [Related]
13. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
14. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C perennial grass species. Hu L; Wang Z; Huang B Physiol Plant; 2010 May; 139(1):93-106. PubMed ID: 20070869 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of crown tissue is crucial for drought tolerance and recovery after stress cessation in Lolium/Festuca forage grasses. Perlikowski D; Skirycz A; Marczak Ł; Lechowicz K; Augustyniak A; Michaelis Ä; Kosmala A J Exp Bot; 2023 Jan; 74(1):396-414. PubMed ID: 36214776 [TBL] [Abstract][Full Text] [Related]
16. Leaf proteome analysis of eight Populus xeuramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Bonhomme L; Monclus R; Vincent D; Carpin S; Lomenech AM; Plomion C; Brignolas F; Morabito D Proteomics; 2009 Sep; 9(17):4121-42. PubMed ID: 19722189 [TBL] [Abstract][Full Text] [Related]
18. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Belko N; Zaman-Allah M; Diop NN; Cisse N; Zombre G; Ehlers JD; Vadez V Plant Biol (Stuttg); 2013 Mar; 15(2):304-16. PubMed ID: 22823007 [TBL] [Abstract][Full Text] [Related]
20. Scavenging of nitric oxide up-regulates photosynthesis under drought in Festuca arundinacea and F. glaucescens but reduces their drought tolerance. Perlikowski D; Lechowicz K; Pawłowicz I; Arasimowicz-Jelonek M; Kosmala A Sci Rep; 2022 Apr; 12(1):6500. PubMed ID: 35444199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]