These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 23046116)

  • 1. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells.
    Bessler WG; Vogler M; Störmer H; Gerthsen D; Utz A; Weber A; Ivers-Tiffée E
    Phys Chem Chem Phys; 2010 Nov; 12(42):13888-903. PubMed ID: 20820576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
    Pomfret MB; Owrutsky JC; Walker RA
    J Phys Chem B; 2006 Sep; 110(35):17305-8. PubMed ID: 16942063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ optical studies of solid-oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():151-74. PubMed ID: 20636038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes.
    Kennouche D; Hong J; Noh HS; Son JW; Barnett SA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15249-55. PubMed ID: 24938312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes.
    Li X; Liu M; Lee JP; Ding D; Bottomley LA; Park S; Liu M
    Phys Chem Chem Phys; 2015 Sep; 17(33):21112-9. PubMed ID: 25599129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells.
    Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new anode for solid oxide fuel cells with enhanced OCV under methane operation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Núñez P; Zhou W; Irvine JT
    Phys Chem Chem Phys; 2007 Apr; 9(15):1821-30. PubMed ID: 17415494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells.
    Pomfret MB; Demircan O; Sukeshini AM; Walker RA
    Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of anode microstructure on solid oxide fuel cells.
    Suzuki T; Hasan Z; Funahashi Y; Yamaguchi T; Fujishiro Y; Awano M
    Science; 2009 Aug; 325(5942):852-5. PubMed ID: 19679808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC.
    Li ZP; Mori T; Auchterlonie GJ; Zou J; Drennan J
    Phys Chem Chem Phys; 2011 May; 13(20):9685-90. PubMed ID: 21494741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.
    Huang TJ; Wu CY; Lin YH
    Environ Sci Technol; 2011 Jul; 45(13):5683-8. PubMed ID: 21667969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What does carbon tolerant really mean? Operando vibrational studies of carbon accumulation on novel solid oxide fuel cell anodes prepared by infiltration.
    Welander MM; Drasbæk DB; Traulsen ML; Sudireddy BR; Holtappels P; Walker RA
    Phys Chem Chem Phys; 2020 May; 22(17):9815-9823. PubMed ID: 32337517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.