These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 23046387)
1. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation. Pinczewska A; Sosna M; Bloodworth S; Kilburn JD; Bartlett PN J Am Chem Soc; 2012 Oct; 134(43):18022-33. PubMed ID: 23046387 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH. Ghanem MA; Chrétien JM; Kilburn JD; Bartlett PN Bioelectrochemistry; 2009 Sep; 76(1-2):115-25. PubMed ID: 19346167 [TBL] [Abstract][Full Text] [Related]
3. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793 [TBL] [Abstract][Full Text] [Related]
4. Acid-base equilibria of various oxidation states of aqua-ruthenium complexes with 1,10-phenanthroline-5,6-dione in aqueous media. Fujihara T; Wada T; Tanaka K Dalton Trans; 2004 Feb; (4):645-52. PubMed ID: 15252529 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and electrochemical reduction of a ruthenium complex bearing an N,N-Bis[(benzo[g][1,5]naphthyridin-2-yl)methyl]propane-2-amine ligand as an NAD+/NADH-type redox site. Kimura M; Tanaka K Angew Chem Int Ed Engl; 2008; 47(50):9768-71. PubMed ID: 18985642 [No Abstract] [Full Text] [Related]
6. Redox-active silica nanoparticles. Part 1. Electrochemistry and catalytic activity of spherical, nonporous silica particles with nanometric diameters and covalently bound redox-active modifications. Budny A; Novak F; Plumeré N; Schetter B; Speiser B; Straub D; Mayer HA; Reginek M Langmuir; 2006 Dec; 22(25):10605-11. PubMed ID: 17129036 [TBL] [Abstract][Full Text] [Related]
7. An original electrochemical method for assembling multilayers of terpyridine-based metallic complexes on a gold surface. Liatard S; Chauvin J; Balestro F; Jouvenot D; Loiseau F; Deronzier A Langmuir; 2012 Jul; 28(29):10916-24. PubMed ID: 22742072 [TBL] [Abstract][Full Text] [Related]
8. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575 [TBL] [Abstract][Full Text] [Related]
9. Covalent tethering of organic functionality to the surface of glassy carbon electrodes by using electrochemical and solid-phase synthesis methodologies. Chrétien JM; Ghanem MA; Bartlett PN; Kilburn JD Chemistry; 2008; 14(8):2548-56. PubMed ID: 18205157 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH. Pérez B; Del Valle M; Alegret S; Merkoçi A Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical biosensors based on redox carbon nanotubes prepared by noncovalent functionalization with 1,10-phenanthroline-5,6-dione. Mao X; Wu Y; Xu L; Cao X; Cui X; Zhu L Analyst; 2011 Jan; 136(2):293-8. PubMed ID: 20957284 [TBL] [Abstract][Full Text] [Related]
12. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing. Teymourian H; Salimi A; Hallaj R Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential. Kumar SA; Chen SM Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068 [TBL] [Abstract][Full Text] [Related]
14. Facilitation of high-rate NADH electrocatalysis using electrochemically activated carbon materials. Li H; Li R; Worden RM; Barton SC ACS Appl Mater Interfaces; 2014 May; 6(9):6687-96. PubMed ID: 24780505 [TBL] [Abstract][Full Text] [Related]
15. Factors affecting the electrochemical regeneration of NADH by (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: impact on their immobilization onto electrode surfaces. Walcarius A; Nasraoui R; Wang Z; Qu F; Urbanova V; Etienne M; Göllü M; Demir AS; Gajdzik J; Hempelmann R Bioelectrochemistry; 2011 Aug; 82(1):46-54. PubMed ID: 21700510 [TBL] [Abstract][Full Text] [Related]
16. Proton-induced dynamic equilibrium between cyclometalated ruthenium rNHC (remote N-heterocyclic carbene) tautomers with an NAD+/NADH function. Padhi SK; Kobayashi K; Masuno S; Tanaka K Inorg Chem; 2011 Jun; 50(12):5321-3. PubMed ID: 21615114 [TBL] [Abstract][Full Text] [Related]
17. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH. de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802 [TBL] [Abstract][Full Text] [Related]
18. Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. Chovin A; Garrigue P; Sojic N Bioelectrochemistry; 2006 Sep; 69(1):25-33. PubMed ID: 16356786 [TBL] [Abstract][Full Text] [Related]
19. Grafted Azure A modified electrodes as disposable β-nicotinamide adenine dinucleotide sensors. Revenga-Parra M; Gómez-Anquela C; García-Mendiola T; Gonzalez E; Pariente F; Lorenzo E Anal Chim Acta; 2012 Oct; 747():84-91. PubMed ID: 22986139 [TBL] [Abstract][Full Text] [Related]
20. A new dinuclear ruthenium complex as an efficient water oxidation catalyst. Xu Y; Akermark T; Gyollai V; Zou D; Eriksson L; Duan L; Zhang R; Akermark B; Sun L Inorg Chem; 2009 Apr; 48(7):2717-9. PubMed ID: 19243152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]