These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 2304643)
1. Central control of the sensory afferent terminals from a leg chordotonal organ in crayfish in vitro preparation. Cattaert D; elManira A; Marchand A; Clarac F Neurosci Lett; 1990 Jan; 108(1-2):81-7. PubMed ID: 2304643 [TBL] [Abstract][Full Text] [Related]
2. Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents. Cattaert D; el Manira A; Clarac F J Neurophysiol; 1992 Mar; 67(3):610-24. PubMed ID: 1578247 [TBL] [Abstract][Full Text] [Related]
3. Antidromic modulation of a proprioceptor sensory discharge in crayfish. Bévengut M; Clarac F; Cattaert D J Neurophysiol; 1997 Aug; 78(2):1180-3. PubMed ID: 9307148 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. I. Multisensory coding and motor neuron monosynaptic responses. Le Ray D; Clarac F; Cattaert D J Neurophysiol; 1997 Dec; 78(6):3133-43. PubMed ID: 9405533 [TBL] [Abstract][Full Text] [Related]
5. Effects of antidromic discharges in crayfish primary afferents. Cattaert D; Bévengut M J Neurophysiol; 2002 Oct; 88(4):1753-65. PubMed ID: 12364504 [TBL] [Abstract][Full Text] [Related]
6. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish. Le Ray D; Cattaert D J Neurophysiol; 1997 Apr; 77(4):1963-78. PubMed ID: 9114248 [TBL] [Abstract][Full Text] [Related]
7. Chloride conductance produces both presynaptic inhibition and antidromic spikes in primary afferents. Cattaert D; el Manira A; Clarac F Brain Res; 1994 Dec; 666(1):109-12. PubMed ID: 7889358 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons. Le Ray D; Clarac F; Cattaert D J Neurophysiol; 1997 Dec; 78(6):3144-53. PubMed ID: 9405534 [TBL] [Abstract][Full Text] [Related]
9. Primary afferent depolarizations of sensory origin within contact-sensitive mechanoreceptive afferents of a crayfish leg. Marchand AR; Barnes WJ; Cattaert D J Neurophysiol; 1997 Jun; 77(6):3340-54. PubMed ID: 9212279 [TBL] [Abstract][Full Text] [Related]
10. Electrical coupling of mechanoreceptor afferents in the crayfish: a possible mechanism for enhancement of sensory signal transmission. el Manira A; Cattaert D; Wallén P; DiCaprio RA; Clarac F J Neurophysiol; 1993 Jun; 69(6):2248-51. PubMed ID: 8394415 [TBL] [Abstract][Full Text] [Related]
11. Peripheral proprioceptive modulation in crayfish walking leg by serotonin. Rossi-Durand C Brain Res; 1993 Dec; 632(1-2):1-15. PubMed ID: 8149217 [TBL] [Abstract][Full Text] [Related]
12. Presynaptic inhibition and antidromic discharges in crayfish primary afferents. Cattaert D; El Manira A; Bévengut M J Physiol Paris; 1999; 93(4):349-58. PubMed ID: 10574123 [TBL] [Abstract][Full Text] [Related]
13. A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. Burrows M; Matheson T J Neurosci; 1994 Jan; 14(1):272-82. PubMed ID: 8283235 [TBL] [Abstract][Full Text] [Related]
14. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system. Elson RC; Sillar KT; Bush BM J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243 [TBL] [Abstract][Full Text] [Related]
15. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish. Le Ray D; Combes D; Déjean C; Cattaert D J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591 [TBL] [Abstract][Full Text] [Related]
16. Central inhibitory microcircuits controlling spike propagation into sensory terminals. Watson A; Le Bon-Jego M; Cattaert D J Comp Neurol; 2005 Apr; 484(2):234-48. PubMed ID: 15736226 [TBL] [Abstract][Full Text] [Related]
17. Monosynaptic Interjoint Reflexes and their Central Modulation During Fictive Locomotion in Crayfish. El Manira A; DiCaprio RA; Cattaert D; Clarac F Eur J Neurosci; 1991; 3(12):1219-1231. PubMed ID: 12106221 [TBL] [Abstract][Full Text] [Related]
18. Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. Cattaert D; El Manira A J Neurosci; 1999 Jul; 19(14):6079-89. PubMed ID: 10407044 [TBL] [Abstract][Full Text] [Related]
19. Active motor neurons potentiate their own sensory inputs via glutamate-induced long-term potentiation. Le Ray D; Cattaert D J Neurosci; 1999 Feb; 19(4):1473-83. PubMed ID: 9952423 [TBL] [Abstract][Full Text] [Related]
20. Control of transmission in muscle group IA afferents during fictive locomotion in the cat. Gossard JP J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]