These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23046627)

  • 1. Independent migration of cell populations in the early gastrulation of the amphipod crustacean Parhyale hawaiensis.
    Chaw RC; Patel NH
    Dev Biol; 2012 Nov; 371(1):94-109. PubMed ID: 23046627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the amphipod crustacean Parhyale hawaiensis.
    Alwes F; Hinchen B; Extavour CG
    Dev Biol; 2011 Nov; 359(1):110-123. PubMed ID: 21827744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation.
    Price AL; Modrell MS; Hannibal RL; Patel NH
    Dev Biol; 2010 May; 341(1):256-66. PubMed ID: 20005872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis.
    Browne WE; Price AL; Gerberding M; Patel NH
    Genesis; 2005 Jul; 42(3):124-49. PubMed ID: 15986449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis.
    Extavour CG
    Dev Biol; 2005 Jan; 277(2):387-402. PubMed ID: 15617682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis.
    Price AL; Patel NH
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):24-40. PubMed ID: 17152085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local activation of protein kinase A inhibits morphogenetic movements during Xenopus gastrulation.
    Song BH; Choi SC; Han JK
    Dev Dyn; 2003 May; 227(1):91-103. PubMed ID: 12701102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody staining of Parhyale hawaiensis embryos.
    Rehm EJ; Hannibal RL; Chaw RC; Vargas-Vila MA; Patel NH
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.prot5129. PubMed ID: 20147024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis.
    Hannibal RL; Price AL; Patel NH
    Dev Biol; 2012 Jan; 361(2):427-38. PubMed ID: 22037675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution.
    Hannibal RL; Price AL; Parchem RJ; Patel NH
    Dev Genes Evol; 2012 May; 222(3):139-51. PubMed ID: 22466422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injection of Parhyale hawaiensis blastomeres with fluorescently labeled tracers.
    Rehm EJ; Hannibal RL; Chaw RC; Vargas-Vila MA; Patel NH
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.prot5128. PubMed ID: 20147023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fixation and dissection of Parhyale hawaiensis embryos.
    Rehm EJ; Hannibal RL; Chaw RC; Vargas-Vila MA; Patel NH
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.prot5127. PubMed ID: 20147022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm.
    Nestorov P; Battke F; Levesque MP; Gerberding M
    PLoS One; 2013; 8(2):e56049. PubMed ID: 23418507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.
    Spencer AK; Siddiqui BA; Thomas JH
    Dev Biol; 2015 Jun; 402(2):192-207. PubMed ID: 25929228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of cell lineage and spatiotemporal pattern formation of the mesoderm in the amphipod crustacean Orchestia cavimana.
    Hunnekuhl VS; Wolff C
    Dev Dyn; 2012 Apr; 241(4):697-717. PubMed ID: 22374787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ablation of a single cell from eight-cell embryos of the amphipod crustacean Parhyale hawaiensis.
    Nast AR; Extavour CG
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24686416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis.
    Havemann J; Müller U; Berger J; Schwarz H; Gerberding M; Moussian B
    Cell Tissue Res; 2008 May; 332(2):359-70. PubMed ID: 18293012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Germ cells in the crustacean Parhyale hawaiensis depend on Vasa protein for their maintenance but not for their formation.
    Ozhan-Kizil G; Havemann J; Gerberding M
    Dev Biol; 2009 Mar; 327(1):230-9. PubMed ID: 19013453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration.
    Sun DA; Patel NH
    Wiley Interdiscip Rev Dev Biol; 2019 Sep; 8(5):e355. PubMed ID: 31183976
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Goldstein B; Nance J
    Genetics; 2020 Feb; 214(2):265-277. PubMed ID: 32029580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.