BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23046631)

  • 1. Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge.
    Wang SQ; Li HX
    BMC Syst Biol; 2012; 6 Suppl 1(Suppl 1):S3. PubMed ID: 23046631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative modeling of transcriptional regulatory networks by integrating multiple source of knowledge.
    Wang SQ; Li HX
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1555-65. PubMed ID: 22614332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.
    Liu H
    Bioprocess Biosyst Eng; 2010 May; 33(4):495-505. PubMed ID: 19657679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics-based models of transcriptional regulation with gene sequence.
    Wang S; Shen Y; Hu J
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2469-76. PubMed ID: 26458822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating nucleosomes into thermodynamic models of transcription regulation.
    Raveh-Sadka T; Levo M; Segal E
    Genome Res; 2009 Aug; 19(8):1480-96. PubMed ID: 19451592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.
    Hasegawa T; Yamaguchi R; Nagasaki M; Miyano S; Imoto S
    PLoS One; 2014; 9(8):e105942. PubMed ID: 25162401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome.
    Albert I; Mavrich TN; Tomsho LP; Qi J; Zanton SJ; Schuster SC; Pugh BF
    Nature; 2007 Mar; 446(7135):572-6. PubMed ID: 17392789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach.
    Linde J; Hortschansky P; Fazius E; Brakhage AA; Guthke R; Haas H
    BMC Syst Biol; 2012 Jan; 6():6. PubMed ID: 22260221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data.
    Lo K; Raftery AE; Dombek KM; Zhu J; Schadt EE; Bumgarner RE; Yeung KY
    BMC Syst Biol; 2012 Aug; 6():101. PubMed ID: 22898396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation.
    Dai Z; Dai X; Xiang Q; Feng J
    Genomics Proteomics Bioinformatics; 2009 Dec; 7(4):155-62. PubMed ID: 20172488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible modeling of regulatory networks improves transcription factor activity estimation.
    Chen C; Padi M
    NPJ Syst Biol Appl; 2024 May; 10(1):58. PubMed ID: 38806476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene pathways using mixture Bayesian networks.
    Ko Y; Zhai C; Rodriguez-Zas S
    BMC Syst Biol; 2009 May; 3():54. PubMed ID: 19454027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcriptional regulatory code of eukaryotic cells--insights from genome-wide analysis of chromatin organization and transcription factor binding.
    Barrera LO; Ren B
    Curr Opin Cell Biol; 2006 Jun; 18(3):291-8. PubMed ID: 16647254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the transcription control mechanism.
    Mao C; Brown CR; Falkovskaia E; Dong S; Hrabeta-Robinson E; Wenger L; Boeger H
    Mol Syst Biol; 2010 Nov; 6():431. PubMed ID: 21081924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.
    Vu TT; Vohradsky J
    Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.